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Chapter 23

Mathematics and Mathematical

AXioms

In every other science men prove their conclusions by their
principles, and not their principles by the conclusions.

Berkeley

8§1. Mathematics and Its Axioms

Kant once remarked that a doctrine was a science proper only insofar as it contained mathematics.
This shocked no one in his day because at that time mathematics was still the last bastion of
rationalism, proud of its history, confident in its traditions, and certain that the truths it
pronounced were real truths applying to the real world. Newton was not a ‘physicist’; he was a
‘mathematician.’ It sometimes seemed as if God Himself was a mathematician.

The next century and a quarter after Kant’s death was a tough time for mathematics. The
‘self evidence’ of the truth of some of its basic axioms burned away in the fire of new
mathematical discoveries. Euclid’s geometry was not the only one possible; analysis was
confronted with such mathematical ‘monsters’ as everywhere-continuous/nowhere-differentiable
curves; set theory was confronted with the Russell paradox; and Hilbert’s program of formalism
was defeated by Godel’s ‘incompleteness’ theorems.

The years at the close of the nineteenth and opening of the twentieth centuries were the era

of the “crisis in the foundations’ in mathematics. Davis and Hersch write:

The textbook picture of the philosophy of mathematics is a strangely fragmented one. The reader
gets the impression that the whole subject appeared for the first time in the late nineteenth century,
in response to contradictions in Cantor’s set theory. At that time there was talk of a “crisis in the
foundations.” To repair the foundations, three schools appeared on the scene, and spent some thirty
or forty years quarreling with each other. It turned out that none of the three could really do much
about the foundations, and the story ends in mid-air some forty years ago, with Whitehead and
Russell having abandoned logicism, Hilbert’s formalism defeated by Godel’s theorem, and Brouwer
left to preach constructivism in Amsterdam, disregarded by all the rest of the mathematical world.

This episode in the history of mathematics actually is a remarkable story. Certainly it was a critical
period in the philosophy of mathematics. But by a striking shift in the meaning of words, the fact
that foundationism was at a certain critical period the dominant trend in the philosophy of
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mathematics has led to the virtual identification of the philosophy of mathematics with the study of
foundations. Once this identification is made, we are left with a peculiar impression: the philosophy
of mathematics was an active field for only forty years, and after a while went back to sleep.

In reality there has always been a philosophical background, more or less explicit, to mathematical
thinking. The foundationist period was one in which leading mathematicians were overtly concerned
with philosophical issues, and engaged in public controversy about them [DAVI: 322-323].

Well, yes. This is what we need to talk about.

§ 1.1 The Fall of the Axiom
The mathematical axiom has suffered a long fall from its ancient eyrie. Nearly 24 centuries ago it
was held to be a self-evident truth, a statement that was absolutely beyond any suspicion that it
could be false. Today mathematicians tell non-mathematicians that an axiom is only a premise or
rule in a game, a starting point. In the more official language of Nelson’s Dictionary of

Mathematics (2nd ed.), an axiom is

a well-formed formula that is stipulated rather than proved to be so through the application of rules
of inference. The axioms and the rules of inference jointly provide a basis for proving all other
theorems. As different sets of axioms may generate the same set of theorems, there may be many
alternative axiomatizations of the formal system.

And, of course, different sets of axioms may also generate quite different theorems. Such is the
case, for example, in the set of axioms for Riemannian geometry vs. Euclidean geometry.

None of the mathematicians | have the pleasure of knowing is actually in his or her heart so
cavalier about axioms as this ‘rules of the game’ official picture might lead the rest of us to think.
They simply prefer not to spend their time in “philosophical’ arguments with non-mathematicians
over whether or not the axioms they use are ‘really true.” The mathematics community by and
large has agreed upon a set of axioms (today, the axioms of ‘axiomatic set theory’) and they use
these, implicitly or explicitly, in doing mathematics. There are a few ‘bad boy’ axioms that have
historically caused trouble — and when one of these is used an adjective is usually applied to
describe the particular brand of mathematics, e.g. ‘Euclidean geometry’ — but | think that they
regard most of their axioms as ‘really’ being self-evident and descriptive of ‘the way things
obviously are.’

The problem is they cannot prove that the ‘good boy’ axioms are ‘really’ absolutely true.
“Proof” to a mathematician is an almost holy concept. As they sometimes put it, “if you haven’t
got a proof, you have nothing.” Mathematics is the art — and, | will say, the science — of proving
theorems, and a theorem is a statement that, given the premises laid down by the axioms and
certain agreed-upon rules of inference, is apodictically true.

For a long time it was thought that one could demonstrate an axiom was True. The idea was:
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deny the axiom (assert its logical contradiction) and then show that the resulting formal system
which followed from using that second axiom in place of the first was self-contradictory.
Historically the first axiom on which this method was tried was Euclid’s “parallel axiom’, which
states “if two straight lines lying in a plane are met by another line, and if the sum of the internal
angles on one side is less than two right angles, then the straight lines will meet if they are
extended sufficiently on the side on which the sum of the angles is less than two right angles.”
Now many of us, upon reading this statement, are likely to blink a couple of times. The
statement looks complicated, and compared to Euclid’s other axioms (e.g. “all right angles are
equal™) it is. This axiom is called ‘the parallel axiom’ because if the ‘sum of the internal angles’
is equal to “two right angles’ (180 degrees), the consequence held to follow is that the two lines
will never intersect no matter how far they are extended. Indeed, this condition on the internal
angles could be taken as the defining property of ‘parallel lines’ in Euclidean geometry. The
axiom is phrased in this apparently ‘complicated” way because it is easy to draw a picture and

‘see’ that the two lines will “obviously” intersect. An example of such a picture is shown below.

A +B <180

—

Here it seems obvious that Euclid’s parallel axiom is true. However, because the wording of

o —

this axiom is so complicated compared to the other axioms of Euclid, it was decided to ‘prove’
that this axiom was True by demonstrating its truth through the others. How was this to be done?
The approach was to deny the parallel axiom and then show that when combined with the others
contradiction would result. Girolamo Saccheri (1667-1733) and Kant’s friend Johann Lambert
(1728-1777) were two of the most notable early investigators of this approach. Both men thought
they had succeeded in demonstrating the looked-for contradiction but, as it turns out, they were
wrong. Nikolai Ivanovich Lobatschewsky (1793-1856) and Georg Friedrich Bernhard Riemann
(1826-1866) both succeeded in coming up with perfectly self-consistent geometries using two

different versions of the axiom that replaced Euclid’s. As a result, we today have not one, not
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two, but three different and ‘perfectly good’ forms of geometry. And, as it turns out, they can be
extended to more than just three ‘dimensions.” Riemann, in fact, showed there were indefinitely
many self-consistent geometries obtainable through playing with some of the other axioms, but it
turned out that three were more than enough for nineteenth century mathematics. Two would
have been more than enough.

Referring back to the previous figure, it probably strikes most of us as absurd that Euclid’s
axiom (playfully known by some as “Euclid’s fifth”) could possibly be wrong. “Obviously” the
lines will eventually intersect on the right. Equally “obvious” is that if we rotate the lower line
until A + B > 180 degrees, the lines must eventually intersect on the left. “Clearly” then, at A + B
= 180 degrees, the lines must either eventually intersect on both the left and right (which seems
absurd) or else never intersect at all (which does not seem absurd). This is, of course, how
“Euclid’s fifth” became an axiom in the first place. However, there are a couple presuppositions
hiding in this line of reasoning. The first is that we ‘know’ what constitutes a ‘straight line’. The
second is that we must suppose it ‘makes sense’ that we actually could ‘extend a straight line
indefinitely’.

Both these presuppositions seem to be pretty safe, at least for those of us who have not over-
trained in mathematics or philosophy. Some might even say they are “intuitively correct.” But
why is this? Piaget, through a careful set of experiments and observations, was able to show that
as children we develop geometric concepts and ideas through sensorimotor capabilities that end
up being precisely the same ideas that underlie Euclidean geometry [PIAG9]. In other words,
through schemes of construction we come to put together concepts that are at root those
embedded in Euclid’s axioms and definitions. Indeed, these developed and empirical concepts
‘make more sense’ to many of us than do Euclid’s actual statements of his definitions and

axioms. For example, Euclid’s first four definitions are:

1. A point is that which has no part.

2. A line is a breadthless length.

3. The extremities of a line are points.

4. A straight line is a line which lies evenly with the points on itself.
Until one is acclimatized to this way of talking through practice in geometry and intercourse with
other people who constantly talk like this (mathematicians), definitions 1, 2, and 4 at least do not
‘make much sense’ to many of us. The reason is that these mathematical objects are idealizations
of things we can actually construct using pencil, paper, and a good ruler. Even then definition 4 is
something of a challenge for many of us. What exactly does it mean to say a line “lies evenly

with the points on itself”? Most of us who bother to try to understand this statement come to
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understand it “in reverse.” That is to say, we take some sensible objects we use as examples of
‘things that are straight’ and then tell ourselves, “okay, to ‘lie evenly with the points on itself’
means to look like this.”

One thing you might find to be interesting is that neuroscience has identified within the
primary visual cortex (Brodmann’s area 17) groups of neurons that respond only to stimulations
of specific areas of the retina that have properties we all agree to call ‘linear’ properties. Such
neuron groups have what is officially called a ‘rectilinear receptive field” of vision.! They are
somatic representations of what we can justly call very small little ‘straight line segments’ but, of
course, these representations are neither breadthless nor indefinitely extended. It also appears it
might be the case that the ‘wiring’ of these neuron groups, or perhaps of the afferent neural
pathways delivering signals to them, develops after birth and is not ‘innate.’

Another factor pertinent to this discussion is the perceptual phenomenon called perspective.
Suppose you are traveling on a very ‘straight, flat” road with an unobstructed view for many
miles ahead (say, for example, Interstate 80 west of Salt Lake City, Utah). If you look at the road
ahead, it will appear as if the ‘parallel lines’ at the edge of the road converge in the distance,
something like what is illustrated in the following figure. Compare this with what you can
imagine the previous figure to look like if we made A + B = 180 degrees. | think you will find
that the ‘obviousness’ that the lines in the previous figure would not intersect depends on your
keeping a ‘local perspective’ on the lines, e.g. ‘traveling along as we extend them’ and noticing
that the distance between the lines neither increases nor decreases. The point that I’m making
here is this: When we actually encounter “very long, straight, parallel lines’ our experience is that
of the perspective shown below. We base the ‘obviousness’ that parallel lines would not intersect
‘just from looking’ at the first figure on what is really an elaborate mental construction process
that, in part, constrains our two parallel straight lines to maintain the appearance of equal distance

between them ‘as we go along with them.” Of course we all “know’ that if we drive down the road

! See Carol Mason and Eric R. Kandel, “Central visual pathways,” in [KAND: 420-439].
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the sides of the road really do not squeeze in on us, despite what the perspective looks like. But
this, too, depends on our having this experience. Suppose you were Kenge the pygmy, whom we
met in Chapter 16. Then what do you suppose you would think of taking a drive down this road?

To make matters more interesting, suppose we turn around and look back down the road
from where we’ve come. We’ll see the same perspective effect. But suppose we’ve not actually
traveled the road — let’s say we were born and raised at one place along the road and never left
that spot for more than a mile or so in either direction.? How sure would we be that the straight
edges of the road, clearly ‘parallel” where we’ve lived, don’t ‘really’ eventually intersect in both
directions?

The point to all this is that the ‘obviousness’ of Euclid’s fifth is based on a mental process
of construction backed up by the experience we’ve had. In point of fact, four of Euclid’s five

axioms are expressed in terms of construction processes:

Let the following be postulated:
1. To draw a straight line from any point to any point.
2. To produce a finite straight line continuously in a straight line.
3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.
5. That, if a straight line falling on two straight lines make the interior angles on the same side
less than two right angles, the two straight lines, if produced indefinitely, meet on that side on
which are the angles less than two right angles [EUCL.: 2].

Backing up these axioms were five ‘common notions’:

1. Things which are equal to the same thing are also equal to one another.
2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one another.

5. The whole is greater than the part [EUCL.: 2].

The idea of “parallel lines’ in Euclid was definition 23:

(Def.) 23. Parallel straight lines are straight lines which, being in the same plane and being produced
indefinitely in both directions, do not meet one another in either direction [EUCL.: 2].

For centuries every educated person looked at these and, more or less, said, “yes, I’ll buy
into that.” It was just ‘intuitive’ that the non-ideal lines, points, etc. could in principle be made
finer and finer until they ‘reached the ideals’ described in Euclidean geometry. I suspect that even
‘extending a line indefinitely” posed no great problem for the classical Greeks since most of them,

with the glaring exception of Plato, did not think anything could be ‘infinite.” (Dividing by zero

2 Interstate 80 in the great salt flat west of Salt Lake City runs about 90 miles more or less ‘straight as an
arrow.” About 45 miles in there’s a filling station (or at least there was in 1975), and nothing else made by
man along the whole stretch except the highway itself (or, at least, that was so in 1975).
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was not an issue either, since in those days only a lunatic would think he could divide something
by nothing). ‘Indefinitely’ in this sense more or less means “as far as you can’, and for parallel
lines this implies ‘extend them as far as you can and still they won’t meet.’

But by the 18th century ‘infinity’ was much more popular (although it was still a ‘becoming’
and not yet what Cantor would later make it out to be), and mathematicians despise ‘mere
intuition” as an argument for the truth of something. If we can imagine that two lines never, ever
will meet, we can equally well take a look at our road example and imagine that they will. Of
course, in the case of geometry every mathematician was sure the latter was going to prove out to
be just an illusion, and as soon as Euclid’s fifth was vindicated everyone who was not stupid
would realize that. Hume and the empiricists had assailed Euclid’s fifth without success and
geometry remained the bastion of mathematics and the redoubt of rationalism.

It is not at all clear when, where, why, or by whom work on ‘vindicating’ Euclid’s fifth first
began. According to Professor Ball, attempts to prove it (rather than take it as an axiom) date
back to “from early times.” Bertrand Russell credits Karl Friedrich Gauss (1777-1855) with
launching the research that led to non-Euclidean geometries [RUSS2: 19], but this is clearly
wrong since it is known that Saccheri and Lambert both worked on it before Gauss was born. It is
also clear that the 18th century work was aimed at vindicating it rather than challenging it. For

example, in a 1766 letter to Kant, Lambert wrote

Our knowledge of the form, as in logic, is as incontestable and right as in geometry. . . Axioms and
postulates actually contain only simple concepts [KANT20a: 85 (10: 64-65)].

No one has ever been able to derive Euclid’s fifth from the other axioms, and mathematics has by
now concluded that it is not possible to do so.

But ‘not being false’ and ‘being necessary to geometry’ are not the same thing. By 1826
Lobatschewsky had denied the fifth and come up with a ‘hyperbolic’ geometry, and by 1854
Riemann had done the same and published his resulting “elliptic’ geometry. So now there were
three: Euclidean (or ‘parabolic’), hyperbolic, and elliptic. In Riemann’s geometry there are no
‘parallel’ lines, and our speculation above that maybe the lines intersect on both sides is true. And

if you find that unsettling, imagine how the mathematicians of the nineteenth century felt.

8§ 1.2 The Axioms of Set Theory
Although we call them the “axioms of Euclid,” it is very unlikely that Euclid originally formulated

them. It was generally held in ancient times that Euclid had drawn upon the works of many

* W.W. Rouse Ball, A Short Account of the History of Mathematics, NY: Dover Publications, 1960, pg.
486. (Prof. Ball first published this work in 1888, and its 4th, and last, edition was published in 1908.)
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predecessors, among them the Pythagoreans, Eudoxus and Theatetus. Almost nothing is known of
Euclid’s life. He lived around 300 B.C. and it is thought that he received his education in Athens
from Plato’s former pupils. Almost certainly Euclid put into an orderly form what had probably
been a loose and haphazard tradition of geometric propositions that had been accumulating for

probably at least two centuries, judging from Ball’s History. Of Euclid’s Elements Ball tells us,

The geometrical part is to a large extent a compilation from the works of previous writers. Thus
the substance of books | and Il (except perhaps the treatment of parallels) is probably due to
Pythagoras . . . But this material was rearranged, obvious deductions were omitted . . . and in some
cases new proofs substituted . . . The whole was arranged as a complete and consistent body of
theorems.

The form in which the propositions are presented, consisting of enunciation, statement,
construction, proof, and conclusion, is due to Euclid; so also is the synthetical character of the work,
each proof being written out as a logically correct train of reasoning but without any clue to the
method by which it was obtained.

The defects of Euclid’s Elements as a text-book of geometry have been often stated; the most
prominent of these: (i) The definitions and axioms contain many assumptions which are not
obvious, and in particular the postulate or axiom about parallel lines is not self-evident. (ii) No
explanation is given as to the reason why the proofs take the form in which they are presented . . .
(iii) There is no attempt made to generalize the results arrived at . . .*

That the definitions, axioms, and ‘common notions’ were compiled gradually by many
authors over a long period of time, and that Euclid probably did not modify them beyond
arranging them and perhaps standardizing the manner of expression, might lead one to think that
perhaps these foundations were built on sandy ground. On the other hand, Euclidean geometry
lasted without challenge or modification for 21 centuries. It will be quite some time before the
axioms of set theory will have a chance to make a similar claim.

For set theory is where mathematics eventually turned following the disaster of the non-
Euclidean geometries. By using the word ‘disaster’ | do not imply that it was somehow a bad
thing that the impressive discoveries of Riemann, Lobatschewsky, and others were made. The
‘disaster’ to mathematics was the loss of its long-held conviction that mathematical truths were
certain and that through them mankind could know the world solely by the raw power of logic

and reason. Davis and Hersch write,

Until well into the nineteenth century, the Euclid myth® was as well established among
mathematicians as it was among philosophers. Geometry was regarded by everyone . . . as the
firmest, most reliable branch of knowledge. Mathematical analysis — calculus and its extensions and
ramifications — derived its meaning and legitimacy from its link to geometry . . .

In the nineteenth century, several disasters took place. One disaster was the discovery of non-
Euclidean geometries, which showed there was more than one thinkable geometry.

A greater disaster was the development of analysis so that it overtook geometrical intuition, as in

*W.W.R. Ball, ibid., pp. 54-55.
® By “Euclid myth” they mean the traditional belief that the books of Euclid contain truths about the
universe which are clear and indubitable.
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the discovery of space-filling curves and continuous nowhere-differentiable curves. These stunning
surprises exposed the vulnerability of the one solid foundation — geometrical intuition — on which
mathematics had been thought to rest. The loss of certainty in geometry was philosophically
intolerable, because it implied the loss of all certainty in human knowledge . . .

The theory of sets was developed by Cantor as a new and fundamental branch of mathematics in
its own right. It seemed that the idea of a set — an arbitrary collection of distinct objects — was so
simple and fundamental that it could be the building block out of which all of mathematics could be
constructed . . .

Set theory at first seemed to be almost the same as logic . . . So it seemed possible that set-theory-
logic could serve as the foundation for all of mathematics [DAVI: 330-331].

At first things looked pretty promising for this ‘new foundation’ of mathematics. However,
Cantor did not work from a well-enunciated system of axioms, and it did not take long for the
trouble to begin anew with the appearance of disturbing antinomies and paradoxes — the most
famous of which was, of course, the Russell paradox.

It was in response to the growing number of problems cropping up in set theory that Ernst
Zermelo (1871-1953) first set out to formalize set theory on the basis of a set of definitions and
axioms of its own. This was the birth, in 1908, of axiomatic set theory. However, coming up with
a set of axioms proved to be no easy thing — a somewhat disturbing fact when one considers that
the original purpose behind the whole nineteenth-to-twentieth century undertakings of Peano,
Russell, Whitehead, Hilbert, and others was aimed at recovering the character of absolute
mathematical certainty based upon self-evident truths. Zermelo began the work of axiomatic set
theory, but was soon joined — and sometimes fought — by other mathematicians. The roster of
important contributors includes Abraham Fraenkel, Thoralf Skolem, Paul Bernays, John von
Neumann, and Kurt Godel.

One reason the task proved so difficult was that axiomatic set theory was to be the
foundation for all of mathematics, and this was taken to mean all the mathematics that was
already in existence at that time. It would seem to the impartial outsider that the attitude of the
general mathematics community was a somewhat peculiar one. Certainty was to be recovered for
all of the existing mathematical corpus after the ground upon which that certainty was originally
laid had collapsed from under it. With the exception of Brouwer — the tolerated heretic from
Amsterdam — it seems as if the mathematics community simply refused to consider the possibility
that maybe some existing mathematics really was uncertain, and that perhaps it might be
worthwhile to separate ‘speculative mathematics’ from ‘apodictic mathematics.’

Perhaps this is an unfair characterization; perhaps not. The principals in this drama are long
dead and so, barring the publication of documentary evidence, we will never know the thinking
and motives involved. What we do know is this: There is not a single, universally accepted set of

axioms for axiomatic set theory to this day. There is a set of axioms that enjoys the widest usage
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by a commanding margin. This is the Zermelo-Fraenkel-Skolem (ZFS) set of axioms, and this is
the one we will take a look at here. We also know one more thing: The quest to recover absolute

certainty failed.

On foundations we believe in the reality of mathematics, but of course when the philosophers
attack us with their paradoxes we rush to hide behind formalism and say, “Mathematics is just a
combination of meaningless symbols,” and then we bring out Chapters 1 and 2 on set theory. Finally
we are left in peace to go back to our mathematics and do it as we have always done, with the
feeling that each mathematician has that he is working with something real. This sensation is
probably an illusion, but is very convenient. That is Bourbaki’s attitude toward foundations.®

How the mighty have fallen. Encrypted as they are by the awful hieroglyphics invented by
Russell and Whitehead’, “Chapters 1 and 2 on set theory” make a pretty effective shield. Most of
us have more fun things to do — like setting our hair on fire — than trying to decipher the code. In

the presentation here, we will look at the ZFS system in English.

Axiom 1 (Axiom of Extensionality). Two sets are equal if and only if they have the

same members.

There are a couple of comments to be made with regard to Axiom 1. The first is that it is
natural to presume that the terms “sets” and “members” must have some explicit definitions given
prior to the statement of the axiom. However, it turns out that trying to provide explicit
definitions of either can lead to problems in the system, particularly problems having to do with
the production of antinomies in the theory. For example, a ‘member’ of a ‘set’ might very well
itself be a ‘set” and this opens up the specter of either an infinite regress or a vicious circle in

definition. Fraenkel remarked,

The axiomatization of set-theory renounces a definition of the concept of set and of the relation
between a set s and its elements. The latter, a dyadic relation (or predicate) is denoted by <; xes
reads “x is contained in, is an element of, belongs to, the set s” . . . and its negation is xgs. € enters
as an (undefined) primitive relation, the membership relation [BERN: 4-5].

It is certainly easy for us to see where a mathematician gets his formalism defense of mathematics
being “just a combination of meaningless symbols” from this statement! The non-mathematician
wonders how the mathematician can do anything at all with axioms that are loaded up with terms

that are undefined. Mathematicians accomplish their work through the aid of a formal ‘language’

¢ J. Dieudonné, “The work of Nicolas Bourbaki,” American Mathematical Monthly, 77, 134-145, 1970.

" In the branch of information theory that deals with codes and coding, one very important class of code is
known as the ‘instantaneous code.” The word ‘instantaneous’ refers to being able to decode the message as
it comes in. Sometimes special ‘punctuation marks’ are required in order to be able to do this. | have never
been convinced that the cipher used by the mathematics community isn’t missing some key punctuation
marks.
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that rather looks like a computer programming language. Although I’ll try not to burden you too
much with examples of this ‘language’, one example is in order here as a mere illustration.

Axiom 1 is written formally as

VX, Y (VZ(zex—zey)—>x=y

which at first, second, and third glance doesn’t look at all like the English version of the axiom as
stated above. Translated more or less literally into English, this hieroglyph reads “for every pair X,
y if for every z if ‘z belongs to x’ implies ‘z belongs to y’ then x is equal to y.” This formal
language is full of run-on ‘sentences’ like this. X, y, and z in this ‘language’ are basically
‘placeholders’ (“variables”) into which things can be plugged when one wishes to say something
specific about some thing. The ‘language’ tries to express something that is to be held as having a
‘truth value’ of “true” regardless of whatever gets plugged in for the variables. More practically
speaking, x and y are what get called the “sets” and z is what gets called an “element” or
“member” of these sets. The axiom is ‘phrased’ in this stilted manner in an attempt to be formally

“precise.” In the next section we will look at some criticisms of this formalist approach.

Axiom 2 (Axiom of the Null Set). There exists a set with no members (the empty set).

If one tries to allow the ‘set’ variable to mean some thing, an objective interpretation of this
axiom immediately plunges us into ontological deep weeds. This is because such an objective
interpretation usually comes to the conclusion that the empty set (also called the null set)
represents Nothing (nihil negativum or “negative nothing”). Thereupon the non-mathematician
accuses the mathematician of speaking preposterous nonsense (“How can you say that Nothing
exists when Nothing means non-existence?”). Naturally this is annoying, so the mathematician
pulls out “Chapters 1 and 2 on set theory” and beats us with it until we go away. The literal
translation of the formal statement of this axiom reads: “There is x such that for every y not-y is a
member of x.” Personally, | think this statement isn’t free of problems either, but what the axiom
is intended to enable is to let people make statements like “there are no dodos” with mathematical
precision, e.g., “The set of living dodos is the empty set.” Many binary relations in formal
mathematics could not be ‘general’ without the artifice of the null set. For example, if C is the set
of all cattle in Wyoming and D is the set of living dodos, we could not say CuD=C ® if we were
not permitted to use the idea of the empty set. One theorem that comes out of the ZFS system is

that the empty set (symbolize it as &) is ex officio a member of every other set. It thus plays the

8 This is read, “The union of Cand D is C”.
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role in ‘the algebra of sets’ homologous to that of the ‘identity element’ in group theory. For
example, this theorem allows us to formally express the intersection of sets C and D from the
example above as CnD=. If we were not allowed to do this then the binary relation symbolized
by m could not be ‘universal’ because whether or not we could “say it” in mathematical language
would then depend on ‘what’ the two sets represented. This axiom therefore has a very practical
use despite the fact that its historical origin grew out of the criticism that *Aristotle’s logic’ had
‘existential import.” Mathematics when it is applied in science is used in the role of a very, very,
very precise language. If we’re going to have a language, we’d like to be able to use it to express
any idea that could occur to us, such as “the set of cattle-that-are-also-dogs.” The practical

interpretation of the null set is: & signifies and means contradiction. It is a modal idea.

Axiom 3 (Axiom of Unordered Pairs). If x and y are sets then the set of pairs (x, y) or

the set of pairs (y, x) exists.
This axiom is used to permit us to construct new sets from other (given) sets. Earlier in this
treatise we introduced the important mathematical idea of the Cartesian Product of two sets, i.e.
the set of all ordered pairs of members of A and members of B, A x B. This operation is essential
for being able to define relations and functions, and axiom 3 formally allows us to construct such
a set. However, the axiom operates ‘at a more abstract level’ than the Cartesian product because
what it permits is to pair up sets, not merely the members in each set. Put another way, the axiom
does not require us to be able to enumerate the members of either set. Suppose ‘R represents the
set of ‘real numbers’ and I represents the set of ‘imaginary numbers’ (numbers which when
squared are negative real numbers). The axiom permits us to construct the set of ‘complex

numbers’ (R,3T), which is needed for finding the roots of polynomial equations.

Axiom 4 (Axiom of the Sum Set or Union). If x is a set of sets, the union of all its
members is a set.
This one might make us blink a bit. Suppose the set x is given by {A, B}. Suppose further that A
is a set given as {a, b, c} and B is a set given as {d, e, f}. The axiom says that {a, b, c, d, e, f} is
also a set. Axiom 4 is another construction axiom. What it basically does is permit the analytic
division of the sets that belong to x and then the re-collection of all the ‘pieces’ in another

legitimate set.

Axiom 5 (Axiom of Infinity). There is a set x that contains the empty set and that is such
that if any y belongs to x then the union of y and {y} also belongs to x.

This one is a very strange axiom when expressed in its formal language. | think | can guess what
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question is probably going through your mind right now: “What does that ‘{y}’ symbol mean?”
This symbol stands for “the singleton set”, which is defined as a set with only one member. The
axiom is intended to legitimize the mathematical ‘existence’ of sets that have infinitely many
members by simply declaring that such a set can be constructed through induction. One way that
Fraenkel used to describe the operation yu{y} is the following. The empty set & is a member of
X. Therefore @ {} = {, {T}} is a member of x. Therefore {J, { T} {D.{T}}} is a member
of x. Therefore . . . [BERN: 22]. It’s a good thing that our symbols ‘don’t mean anything’ or right
about now the registrar’s office would be swamped with math students looking to change their
major and civilization as we know it would be on the brink of collapse. The cardinality of a set
means “the number of members in the set.” The axiom is saying that it is not inconsistent to say
there is a set made up of sets having, respectively, cardinality 0 (&), cardinality 1 (the set {<}),
cardinality 2 (the set {&, {<J}}), cardinality 3, etc. without limit. Not to put too fine a point on it,
but the axiom basically is a definition in disguise for ‘counting.” The set x is a “countably infinite
set” and its cardinality was represented by Cantor using the symbol aleph nought (o). This
axiom is introduced specifically to permit the mathematical “‘existence’ of such a set. Without this
axiom mathematics could not ‘legally” work with the “set of whole numbers’ {0, 1, 2, 3, ... oo} |

will withhold further comment on axiom 5 until later.

Axiom 6 (Axiom of Replacement). This is not actually an axiom but rather a schema for

an unlimited bundle of axioms. Even professional mathematicians find it difficult to re-

state the formal expression in English. Roughly, the axiom says *“any ‘reasonable’

property that can be stated in formal language can be used to define the set y of things

having the stated property.”
The sticky point in this axiom is how to determine if a property is ‘reasonable.” It turns out that
axiom (schema) 6 has been a mathematical battleground for the pioneers named earlier. Zermelo
originally presented a simpler version, roughly that which | have stated above, known as the
“axiom of separation”; but it later turned out that in order to support some of the on-going
practices in mathematics, as well as to satisfy certain objections to Zermelo’s terminology, either
more axioms or a re-work of Zermelo’s axiom was deemed necessary [BERN: 11, 22-23]. Both
approaches were put forward (and this accounts for some of why we do not have just one
universally-embraced set of axioms for set theory). It is instructive to look at a ‘two-axiom’
version of axiom 6 made up of Zermelo’s axiom plus another insisted upon by Fraenkel, Skolem,

von Neumann and others:

Axiom 6a (Axiom of Separation). For any set s and any predicate P which is definite for all
members of s, there is a set y that contains just those members x of s which satisfy the
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predicate.

Axiom 6b (Axiom of Substitution). For every set s and every single-valued function f of one
argument which is defined for the members of s, there is a set that contains all f(x) with xes.

6a is a ‘logician’s expression’ of axiom 6 and defines the subset of members for which the
predicate is true. 6b is a more ‘arithmetic’ expression and defines the set of members that are the
images f(x) of the members of the set. The ZFS axiom 6 in a sense tries to state both sub-axioms
in one formal sentence and to allow multiple functions to be simultaneously expressed, which is
one reason its formal expression is difficult to state verbally. Axiom 6 is called an ‘axiom
schema’ because each set of predicates and/or functions defined in effect specifies an axiom
unique to that specification. Note that all three axioms stated above specify that the predicate or
the function must be “definite” or ‘definable’ for each member in the set to which it is applied. A
vague predicate, such as “is blessed of God,” cannot be a predicate under Axiom 6.

It is noteworthy in regard to the axiom of replacement that it took the place of an older
axiom that was implicit in Cantor’s theory. This was the ‘axiom of abstraction’, which basically
said “given any property, there is a set whose members are just those entities possessing that
property.” This simple and seemingly intuitive axiom was the one that allowed the Russell
paradox. Axiom schema 6 is a complicated axiom because it puts in conditions and constraints on

when the set y exists in order to avoid the Russell paradox.

Axiom 7 (Axiom of the Power Set). For any set x the set y consisting of all the subsets

of x exists.
The set of all subsets of x is called the ‘power set’ of x. Although y is defined by a property,
namely that its members are subsets of x, this case is not covered by axiom 6 because the property
is not defined as the range of a function. For example, axiom 6b specified that the function had to
be unary (a function of one member of x), whereas in axiom 7 the property ‘is a subset’ is not a
unary function. Axiom 7 is another construction axiom since y will have more members in it than

did x if the number of members in x is finite.

Axiom 8 (Axiom of Choice). If a implies non-empty set x is a function defined for every

a belonging to s then there is another function f(a) for a belonging to s and f(a) belongs to

X.
What this axiom tries to say is we can select one member from every non-empty subset of s and
use our selections to define a set x. The axiom of choice differs from axiom 6 in that the ‘choice
function’ f is not given any specified property that defines the ‘choices’. The axiom lets us do an

arbitrary ‘choosing’ even though we have no property that would define the choice function. Note
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that the axiom is an axiom proclaiming the ‘existence’ of choice functions f rather than the
‘existence’ of sets. The set x is called a ‘choice set.” Some mathematicians regarded the axiom of
choice as ‘counterintuitive’ because it asserts the ‘existence’ of choice functions f independently
of any property the members of s satisfy. Its place in set theory can be seen as the set-theoretic
counterpart to Euclid’s fifth in geometry. And, like Euclid’s fifth, it turned out to be possible to
deny the axiom of choice and still obtain perfectly self-consistent “non-Cantorian” set theories.
This was proved by Paul J. Cohen in 1963. Therefore, just as we can have more than one kind of

geometry, today we can have more than one kind of set theory.

Axiom 9 (Axiom of Regularity). Non-empty set s implies x exists such that x belongs to

s and every y belonging to x implies y does not belong to s.
This axiom is meant to prohibit any set s from containing itself as a member. It was introduced by
von Neumann in order to deal with certain highly technical issues involving unwanted
circumstances that were shown to be consistent with the other axioms. One such issue was the
possibility, under the system without axiom 9, of the existence of sets that did not contain some

of the “primary constituents’ (such as the null set) of Zermelo’s set theory [BERN: 23-25].

Like the development of Euclid’s axioms and Aristotle’s ten ‘categories,” the development
of the axioms of set theory was historically an empirical and somewhat trial-and-error process.
Commenting on ‘system Z’ (the modified Zermelo system, which is more or less like the one just

described here), Fraenkel wrote:

The rather arbitrary character of the processes which are chosen in the axioms of Z as the basis of
the theory is justified by the historical development of set-theory rather than by logical arguments.
The far-reaching aim of proving the consistency of Z, which would exclude contradictions of types
as yet unknown, is not likely to be attained in the present stage, and in a well-defined sense cannot
be attained at all, in accordance with Godel’s incompletability theorem [BERN: 31].

He goes on to comment upon various weaknesses and disadvantages of ‘system Z’ and how
additions and modifications to it made by von Neumann, Bernays and Godel have addressed the
specific issues he brings up. Unaddressed, of course, is the ‘existence’ of non-Cantorian set
theories, which had not been proved to exist at the time Fraenkel wrote his ‘historical

introduction’ to Bernays’ book (1958).

8 2. Mathematics as an Empirical Science

We have just seen that the efforts of mathematicians to recover the apodictic certainty of the
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axioms as ‘self-evident truths’ during the “crisis in the foundations’ failed in its task. The last
bastion of rationalism finally fell. All this took place during and after the rise of positivism in the
nineteenth century and, in one of history’s ironies, while the ground was giving way beneath the
rationalist position, positivism was declaring that mathematics was to be excluded from ‘the
sciences’ because it was not empirical. We have just seen that the development of axiomatic set
theory (or, if one prefers, theories) was carried out with at least one eye fixed on justifying the
practices of all branches of mathematics. In the end what was achieved was not “certainty’ for all
of them but rather for none of them. But does this not make the practice of mathematics

‘empirical’?

§2.1 Lakatos’ Criticisms of Formalism
Imre Lakatos thought so. Lakatos was an outspoken critic of formalism in mathematics. His main
objection seems to have been that while formalism claims to be doing one thing, the actual
practice of mathematics does something quite otherwise. It is not Lakatos’ position that
mathematics ought to actually practice formalism. He recognizes quite well that the original goal
which inspired the development of formalism proved to be unreachable. Rather, his position is
that mathematics really is an empirical science (even though all its objects are supersensible), and
that it ought to admit that fact and stop pretending to be something else. Lakatos is not known for

being gentle in remonstration:

Formalism disconnects the history of mathematics from the philosophy of mathematics, since,
according to the formalist concept of mathematics, there is no history of mathematics proper. Any
formalist would basically agree with Russell’s ‘romantically’ put but seriously meant remark,
according to which Boole’s Law of Thought (1854) was ‘the first book ever written on
mathematics.” Formalism denies the status of mathematics to most of what has been commonly
understood to be mathematics, and can say nothing about its growth. None of the “creative’ periods
and hardly any of the ‘critical’ periods of mathematical theories would be admitted into the
formalist heaven, where mathematical theories dwell like the seraphim, purged of all the impurities
of earthly uncertainty. Formalists, though, usually leave open a small back door for fallen angels: if
it turns out that for some ‘mixtures of mathematics and something else’ we can find formal systems
‘which include them in a certain sense’, then they too may be admitted. On those terms Newton had
to wait four centuries until Peano, Russell, and Quine helped him into heaven by formalizing the
Calculus. Dirac is more fortunate: Schwartz saved his soul during his lifetime. Perhaps we should
mention here the paradoxical plight of the metamathematician: by formalist, or even by deductivist,
standards, he is not an honest mathematician . . .

Under the present dominance of formalism, one is tempted to paraphrase Kant: the history of
mathematics, lacking the guidance of philosophy, has become blind, while the philosophy of
mathematics, turning its back on the most intriguing phenomena in the history of mathematics, has
become empty [LAKAL: 1-2].

Formalism is the bastion of logical positivism, that bankrupt child of the failed attempt to

defend rationalism and preserve for mathematics the special status which it was believed to own
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for centuries. Lakatos makes it plain that he rejects logical positivism as well as rationalism.
However, this does not make him an ‘empiricist.” Some call him a ‘neo-Popperian’ since his
views are an outgrowth of, yet differ from, those of Karl Raimund Popper (1902-1994). It might
do to call Lakatos a “‘methodologist’ inasmuch as most of his work was concerned with proper
methodology in mathematics and in science, and with the role of refutation (as opposed to
‘confirmation’) in both mathematics and science. His philosophy shares some factors in common
with James-like pragmatism, but it is probably better to describe these factors as a unique brand
of pragmatical skepticism, sometimes dubbed *dubitability.” One theme that recurs in his writing
is ‘justification” — that is: upon what basis is it justified to keep using a theory or method and
when should a theory or method be regarded as ‘refuted’? Put another way: when is science (or
mathematics) ‘justified’ in continuing to use a theory or method in the teeth of evidence that
implies this theory or method is ‘wrong’?

In Lakatos’ view, formalism is long past that point. The actual practice of mathematics, he

tells us, is quasi-empirical and mathematicians should admit it.

The infinite regress in proofs and definitions in mathematics cannot be stopped by a Euclidean
logic. Logic may explain mathematics but it cannot prove it. It leads to a sophisticated speculation
which is anything but trivially true. The domain of triviality is limited to the uninteresting decidable
kernel of arithmetic and of logic — but even this trivial kernel might some time be overthrown by
some detrivializing skeptic criticism.

The logical theory of mathematics is an exciting, sophisticated speculation like any scientific
theory. It is an empiricist theory and thus if not shown to be false, will remain conjectural forever . .
. Hilbert’s theory was based on the idea of formal axiomatics. He claimed . . . that metamathematics,
this new branch of mathematics set up to prove the consistency and completeness of formal systems,
will be a particular brand of Euclidean theory: a ‘finitary’ theory, with trivially true axioms,
containing only perfectly well known terms, and with trivially safe inferences . . .

Godel’s second theorem was a decisive blow to this hope for a Euclidean metamathematics. The
infinite regress in proofs cannot peter out in a “finitarily’ trivial meta-theory: consistency proofs
have to contain enough sophistication to render the consistency of the theory in which they are
carried out dubitable, and therefore they are bound to be fallible . . .

Godel’s first theorem showed a second way in which a formal theory could misfire: if it has a
model at all, it has more models than intended. In a consistent formal theory we can prove those and
only those propositions which are true in all models; so we cannot formally prove those propositions
which are, though true in the intended model, false in an unintended one. Godel’s first theorem
showed that the selectivity of formal systems embracing arithmetic is irreparably bad, for in no
consistent formalization of arithmetic can we ‘tune out’ unintended models which are essentially
different from the intended one. Consequently in any consistent formalization there will be formally
unprovable arithmetical truths [LAKA3: 19-21].

Like Popper, Lakatos held that ‘inductivism’ is not, as Bacon claimed, the actual method of
science. It was Hume who first sharply pointed out that inductive inference is not a proof of
anything since the only justification for trusting induction is that it has worked in the past — a
position that uses induction to justify induction. When induction leads to an infinite regress that

very fact shows there was no foundation for inductive inference. The Great Skeptic wrote:

2142



Chapter 23: Mathematics

Our foregoing method of reasoning will easily convince us, that there can be no demonstrative
argument to prove that those instances, of which we have had no experience, resemble those of
which we have had experience. We can at least conceive a change in the course of nature; which
sufficiently proves that such a change is not absolutely impossible. To form a clear idea of any thing
is an undeniable argument for its possibility, and is alone a refutation of any pretended
demonstration against it . . .

The only connexion or relation of objects which can lead us beyond the immediate impressions of
our memory and senses is that of cause and effect; and that because ‘tis the only one on which we
can found a just inference from one object to another. The idea of cause and effect is deriv’d from
experience, which informs us that such particular objects, in all past instances, have been constantly
conjoin’d with each other: And as an object similar to one of these is suppos’d to be immediately
present in its impression, we thence presume on the existence of one similar to its usual attendant. . .
The past production implies a power: The power implies a new production: And the new production
is what we infer from the power and the past production . . .

It shall therefore be allow’d for a moment, that the production of one object by another in any one
instance implies a power; and that this power is connected with its effect. But it having been already
prov’d that the power lies not in the sensible qualities of the cause; and there being nothing but the
sensible qualities present to us; | ask, why in other instances you presume that the same power still
exists, merely upon the appearance of these qualities? Your appeal to past experiences decides
nothing in the present case; and at the utmost can only prove, that that very object which produc’d
any other was at that very instant endow’d with such a power; but can never prove that the same
power must continue in the same object or collection of sensible qualities; much less, that a like
power is always conjoin’d with like sensible qualities. Shou’d it be said, that we have experience,
that the same power continues united with the same object, and that like objects are endow’d with
like powers, 1 wou’d renew my question, why from this experience we form any conclusion beyond
those past instances, of which we have had experience. If you answer this question in the same
manner as the preceding, your answer gives still occasion to a new question of the same kind, even
in infinitum; which clearly proves that the foregoing reasoning had no just foundation [HUME1: 89-
91].

The same argument applies as much to mathematical objects as to physical objects, as witnessed
by the “parallel’ lines® arguments from earlier (where in one case the lines never intersect, but in
the other they intersect both on the left-hand and on the right-hand sides). Merely because we can
not see a reason why a regular process (e.g. 1+1=2; 2+1=3; 3+1=4 etc.) should ever change to
produce an irregular one (e.g. «o+1=00) is no guarantee that such a change cannot happen when
the induction must proceed beyond the horizon of any possible experience. Arguments of
induction ad infinitum favor only the skeptic.

Lakatos uses this to attack dogmatic adherence to the claim that inductivism is a valid

method of science (including mathematics).

The classical skeptical argument is based on the infinite regress. One can try to pin down the
meaning of a term either by defining it in other terms — this leads to infinite regress — or by defining
it in “‘perfectly well-known terms’. But are the four terms of the expression ‘perfectly well-known
terms’ really all perfectly well-known terms? One sees that the abyss of infinite regress opens up
again. How then could mathematical philosophy still claim that in mathematics we have or we
should have exact concepts? How does it hope to avoid the skeptics’ strictures? How can it claim
that it has offered foundations of mathematics — logicist, metamathematical or intuitionist? But even

° More accurately, the “two straight lines cut by a third line making right angles to each” case.
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allowing for ‘exact’ concepts, how can we prove that a proposition is true? How can we avoid the
infinite regress in definitions? Meaning and truth can only be transferred, but not established. But if
so, how can we know? [LAKAZ3: 3].

Lakatos’ conclusion, of course, is that this is not possible, and certainly not possible through

induction.

It is intriguing how mathematical logicians who are so squeamish about rigor, and who set out to
achieve absolute certainty, can slip into the morass of inductivism. For instance, A. Fraenkel, the
distinguished logician, dares to state that some axioms of logic receive their “full weight’ from ‘the
evidence of their consequences’ [LAKAS: 17].

Axioms, however, are principles if they are supposed to ground the truth and certainty of the
science that employs them. As Berkeley said (in the quote at the head of this chapter) in criticism
of the Calculus, “men prove their conclusions by their principles, not their principles by the

conclusions.” Lakatos asks the mathematicians,

Why not honestly admit mathematical fallibility, and try to defend the dignity of fallible knowledge
from cynical skepticism, rather than delude ourselves that we shall be able to mend invisibly the
latest tear in the fabric of our ‘ultimate’ intuitions? [LAKAS: 23].

§ 2.2 Confessions of the Formalists
The battle to save the foundations is over. The defenders of absolute certainty have long conceded
defeat and left the field. Truth now in mathematics, as it has long been in the physical sciences, is
contextual. Systems are not certain, they are “relatively consistent” — a term that means

‘consistent within a framework.” J.B. Rosser, a follower of Russell, writes,

We wish to make one point clear about our use of the word ‘axiom’. Originally the word was used
by Euclid to mean a ‘self-evident truth’. This use of the word ‘axiom’ has long been completely
obsolete in mathematical circles. For us, the axioms are a set of arbitrarily chosen statements which,
togethelg with the rule of modus ponens, suffice to derive all the statements which we wish to
derive.

Rosser is not an isolated voice. W.V.O. Quine, widely acknowledged as a leading figure in

mathematical logic, wrote,

We may more reasonably view set theory, and mathematics generally, in much the way in which we
view the theoretical portions of the natural sciences themselves: as comprising truths or hypotheses
which are to be vindicated less by the pure light of reason than by the indirect systematic
contribution which they make to the organizing of empirical data in the natural sciences.™

Lakatos, naturally, loved to quote leading mathematicians who were willing to publicly admit that

19 3.B. Rosser, Logic for Mathematicians, NY: McGraw-Hill, 1953.
1 W.V. Quine, “The philosophical bearing of modern logic,” in R. Klibansky (ed.): Philosophy in the Mid-
Century, vol. I, pp. 3-4, Firenze: La Nuova ltalia.
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the old rationalist dream was dead.

Russell was probably the first modern logician to claim that the evidence for mathematics and
logic may be ‘inductive’. He, who in 1901 had claimed that the ‘edifice of mathematical truths
stands unshakable and inexpugnable to all the weapons of doubting cynicism’, in 1924 thought that
logic (and mathematics) is exactly like Maxwell’s equations of electrodynamics: both ‘are believed
because of the observed truth of certain of their logical consequences’.

Fraenkel claimed in 1927 that ‘the intuitive or logical self-evidence of the principles chosen as
axioms [of set theory] naturally plays a certain but not decisive role; some axioms receive their full
weight rather from the self-evidence of the consequences which could not be derived without them’.
And he compared the situation of set theory in 1927 with the situation of the infinitesimal calculus
of the eighteenth century . . .

Carnap, who at the 1930 conference in Konigsberg still thought that ‘any uncertainty in the
foundations of the “most certain of all the sciences” is extremely disconcerting’, [had decided by]
1958 that there is an analogy — if only a distant one — between physics and mathematics: ‘the
impossibility of absolute certainty’ [LAKA3: 25].

Confession, it has been said, is good for the soul. That mathematics is ‘fallible’ insofar as
that word is taken to mean ‘not absolutely certain’ does not in the least imply that the
mathematician is careless or cavalier in establishing his theorems as perfectly true within the
framework of the axiom system in which he works. A contextual truth this may be, but the word
‘truth” has no objectively valid meaning other than congruence of the object with its concept. The
mathematician’s theorems are also contextually certain — that is, the theorem is apodictic given
the acceptance of the axioms and the rules of inference that underlie its proof. None of the
physical sciences has claim to a greater degree of contextual truth and certainty than mathematics.
Indeed, all the ‘exact’ sciences in their theoretical departments depend fundamentally on the
veracity of mathematics. The scientist in such a discipline must of course take the responsibility
for determining if the defined objects of mathematics are good models for the physical objects he
or she studies. But having made the determination, he or she cannot blame mathematics if it
should turn out that Nature is not quite so neatly describable as is the mathematical object.

At bottom it is not really necessary that all mathematical knowledge be absolutely certain
knowledge, and this is good because we have seen in this treatise that knowledge absolute,

unlimited and certain is beyond the capacity of human reason. H.B. Curry wrote,

The search for absolute certainty was evidently a principal motivation for both Brouwer and Hilbert.
But does mathematics need absolute certainty for its justification? In particular, why do we need to
be sure that a theory is consistent, or that it can be derived by an absolutely certain intuition of pure
time, before we use it? In no other science do we make such demands. In physics all theorems are
hypothetical; we adopt a theory so long as it makes useful predictions and modify or discard it as
soon as it does not. This is what has happened to the mathematical theories of the past, where the
discovery of contradictions has led to modifications of the mathematical doctrines accepted up to
the time of that discovery. Why should we not do the same in the future? Using formalistic
conceptions to explain what a theory is, we accept a theory as long as it is useful, satisfies such
conditions of naturalness and simplicity as are reasonable at that time, and is not known to lead us
into error. We must keep our theories under surveillance to see that these conditions are fulfilled and
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to get all the presumptive evidence of adequacy that we can. The Gddel theorem suggests that this is
all we can do; an empirical philosophy of science suggests it is all we should do.*

Earlier in this chapter it was pointed out that the development of the axioms of axiomatic set
theory was carried out under the umbrella of an agenda that had not so much to do with finding
certainty in the axioms as it did with putting an axiomatic basis to the existing corpus of
mathematics. Much earlier in this treatise it was pointed out that Russell and Whitehead had
followed a similar agenda in their Principia. Unpleasant or not, embarrassing or not, it is not a
mean-spirited criticism of mathematics to point out this fact; it is tough love. The Critical
epistemology in any case teaches us that the search for absolute certainty during the “crisis in the
foundations’ was doomed to fail. The “foundations’ research did in any case succeed in ‘rescuing’
a great deal of mathematics from the fires of disillusionment, and this, too, is a good thing and of
so large a benefit as to go begging of description. Suppose that Feynman’s conjecture that “space
is not really continuous” were to turn out to some day be a better description of affairs at the
guantum and sub-nuclear level? This would not detract from or diminish the usefulness of
Newton’s Calculus. The plain and simple fact is nearly all of engineering relies on the Calculus,
and especially on its ease of application, for the foundation of engineering practice. Were some
puritanical Authority to someday decree that because of non-continuity the Calculus could no
longer be taught, in swift order we would have craftsmen but we would have no engineers.

Of course, it is also true, now that the Hilbert program is a known failure and efforts to
defend rationalism in mathematics have ceased, there seems to be no reason to continue to blindly
adhere to the puritans of logical positivism and cloak the very description of mathematics in
opaque run-on symbolic sentences that hide from the larger community of science the full
benefits of mathematical insight. Mathematics needs a better grammar. The present way in which
mathematics is taught is, as Poincaré dryly observed so long ago, “contrary to any healthy

psychology.” Indeed, this anachronism is part and parcel of a larger issue:

History teaching still turns a blind eye towards science, the most exciting and noble of human
ventures, and science and mathematics teaching is disfigured by the customary authoritarian
presentation. Thus presented, knowledge appears in the form of infallible systems hinging on
conceptual frameworks not subject to discussion. The problem-situational background is never
stated and is sometimes already difficult to trace. Scientific education — atomized according to
separate techniques — has degenerated into scientific training. No wonder that it dismays critical
minds.

Now history-cum-philosophy of science has to show up science in history on the one hand and
history in science on the other, and by doing this to exert an important therapeutic influence on both.
If we fail to achieve this, we shall soon face a situation where an abundance of separate courses in
history-cum-philosophy of science will turn the present two uncultures (to paraphrase Sir Charles
Snow) into three, instead of helping to debarbarize both [LAKAS: 255].

2 H.B. Curry, Foundations of Mathematical Logic, NY: McGraw-Hill, 1963.
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8 3. Acroamatic Mathematics

One reason the axioms in 81 end up being expressed in such a complicated way is that a too-
simple statement of an axiom can open the door to antinomies. Because ‘set’ and ‘member of a
set’ are not defined, they can be ‘anything.” Therefore what are usually called ‘unintended
models’ are more likely the more the set of axioms does not specifically prohibit particular
‘types’ of ‘sets.” One famous case of an ‘unintended model’ is “the set s which includes every
possible set except any set that includes itself.” Does s include itself? Obviously it cannot because
s is not allowed to contain any set that includes itself. Does s not include itself? Obviously it
cannot exclude itself because s includes every set that does not include itself. So s both must and
must not include itself. The specification of s is self-contradictory. This is the Russell paradox.

But another reason is because mathematics really is “about something” and what this
“something” is depends upon whatever the person using or ‘doing’ the mathematics needs it to
be. As we have already seen more than once, a mathematician “feels that he is working with
something real.” Every ‘something’ is real in some contexts and is unreal in others. | disagree
with Dieudonné’s guess that the mathematician’s feeling “is probably an illusion.” One need not
regard Plato’s *“World of Truth’ as a “World of that-which-is” in order to think that an idea is
‘real.” It is only when non-Critical ontological presuppositions get tacked on to object concepts
that the ‘reality’ of the objects of mathematics gets called into question. Kant wrote that
mathematics is knowledge through the construction of concepts. The concept of a supersensible
object is called an idea. To carry out its task the systematic doctrine of mathematics must in
principle be capable of constructing any idea whatsoever that is possible for a human being to
think. This is also what the axioms of mathematics try to accomplish, although the degree of
success they have in this endeavor is clearly open to debate.

The mathematical knowledge we have today, obtained through the present doctrine of
mathematics, is contingent knowledge. This is because mathematics’ theorems are proved within
the context of the system of axioms used and this system is itself contingent. This is demonstrated
by the historical character of its development. However, the statement “absolutely all knowledge
is contingent” is false due to overgeneralization. There are indeed some “things’ we can know and
can know with absolute certainty. But to appreciate this, we must examine the Realerklirung of
the idea “absolute certainty.” Only then will we be able to appreciate whether or not “certainty’ is
achievable for axioms of mathematics, what the limitations on the scope of this certainty might

be, what the Existenz of this certainty ‘looks like,” and how such certainty can be established a
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priori. We begin this examination by looking at the reason present-day mathematics is held to be

‘lacking certainty.’

§ 3.1 What Godel's Theorems Say
Hilbert’s program for re-establishing mathematical certainty was based on what he called a
system of ‘metamathematics.” Gédel’s theorems spelled doom for this program. But what was
this program? and how was it done in by Godel?

Hilbert’s metamathematics work was prompted by his alarm at a call from Luitzen Brouwer,
a Dutch mathematician and neo-Kantian, in 1912 for a complete restructuring of mathematics
from the ground floor up. In Hilbert’s view, to follow Brouwer’s radical proposal would mean the
loss of the greatest parts of mathematics and the dismemberment of what was left. Hilbert’s
program was an attempt to guarantee consistency in the sense that no contradictions could be
derived within the structure of the formal mathematical system. (Recall that antinomies arising
out of Cantor’s set theory constituted the main reason for regarding the ‘foundations’ as being in
trouble).

Hilbert took the Kant-like position that at least the “finite’ part of mathematics was a solid
foundation (and such also was Brouwer’s view). To this he added a second premise, namely that a
securely-founded theory about formal sentences could validate all the activities carried out in
doing mathematics (a position that Brouwer did not accept). Hilbert’s program had three steps: 1)
introduce a formal language and formal rules of inference sufficient to represent every correct
proof through a formal derivation starting from axioms and advancing in machine-like steps; 2)
develop a theory of a sort of *symbolic calculus’ that defined valid symbolic manipulations that
could be applied to formulae; and 3) prove by purely finite arguments that no contradictions
could be derived within this system. For step (1) he largely adopted the formal language and rules
of inference already put together by Russell and Whitehead. Step (2) is ‘metamathematics’
properly so-called; during the 1920s this part of the system was developed through the work of a
number of ‘metamathematicians.’

The ‘symbolic calculus’ is interpreted as representing a deductive system in which a
relatively few basic formulae are taken to be the ‘axioms’ of the system and the rules of symbolic
manipulation are regarded as the logical rules of inference of the system. It is important to note
that the symbolic calculus is to be developed independently of any interpretation of it. Put another
way, the symbols in this symbolic calculus are “extra-mathematical.” Two ‘concepts’, called
‘sentences’ and ‘consequences’, are taken as ‘primitives’ within the deductive system and are

defined in terms of some set of axioms. Within this set there are some regarded as ‘basic’ axioms
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(those of general set theory) and others regarded as ‘special’ axioms (also written in the formal
language) that apply to specific deductive disciplines (e.g. ‘arithmetic’).!

The first thing we should note here is that Hilbert and the ‘metamathematicians’ were not in
the business of coming up with “fundamental axioms’ of set theory; that task they left to others
such as Zermelo. The second thing to note is that this formal system necessarily had to take some
of its parts, namely those having to do with rules of inference and the representations of formulae,
from set theory itself. Hilbert et al. were not trying to invent a new set theory; they were trying to
make its deductions so airtight that even Brouwer would have to concede its correctness.

Now, what was it that Godel did? Gddel applied Hilbert’s method to the mathematical
system known as arithmetic. This means what you think it means: the system of whole numbers
and addition and multiplication. For his ‘deductive system’ Gddel took the portion of Russell’s
and Whitehead’s Principia in which is found the theorems of whole-number arithmetic.
Following the methods of metamathematics, Godel proved two theorems, both of which came as
a profound shock to everyone. The first is his ‘Unprovability” Theorem. It says essentially that
there exist possible ‘propositions’ within the system of arithmetic that cannot be proved within
this system. The second theorem states that the ‘consistency’ of the arithmetic system likewise
cannot be proved within this system. The second theorem was an even greater shock to everyone
than was the first, especially since the results applied to the oldest — and in many ways the
simplest — of all mathematical systems: basic whole-number arithmetic. Hilbert’s entire program
was based on the premise that ‘correct’ theorems could always be proved within the deductive
system and that the consistency of the deductive system could likewise always be self-
demonstrated by the ‘formal’ approach. Gddel’s theorems, to put it simply, tell us: This is not so.

Although Gddel made the system of arithmetic the focus of his paper, the proofs of these two
‘incompleteness’ theorems called upon surprisingly few characteristics of this formal system.
There are other mathematical systems that also meet the conditions of the theorem and therefore
contain unprovable propositions and are incapable of proving their own consistency. Godel called
the first two of these conditions ‘assumptions 1 and 2°, which simply state that the class of
axioms and rules of inference can be formally stated in a particular way and are definable in the
system under consideration. The technical term for the base condition is that formal expressions
are ‘recursively definable’ in the “‘meta-language’ of metamathematics, and this condition simply

means that propositions can be stated as consequences of previous propositions given the axioms

! see A. Tarski, “On some fundamental concepts of metamathematics,” in Logic, Semantics, Meta-
Mathematics, 2nd ed., John Corcoran (ed.), J.H. Woodger (tr.), Indianapolis, IN: Hackett Publishing Co.,
1983, pp. 30-37.
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and rules of inference. The third condition is the property of being ‘w-consistent’, which was a
technical term he introduced that expresses a particular (provable) condition of ‘consistency’ met
by the system. In a system that is not ‘w-consistent’ a proposition and its contradiction can be
‘proved’ to be true. Every mathematical system that is ‘consistent’ is also w-consistent, but not
every w-consistent system is necessarily consistent in the general sense. After proving the first of

the two ‘incompleteness’ theorems, Godel commented,

Hence in every system that satisfies assumptions 1 and 2 and is w-consistent, undecidable
propositions exist . . . and so too in every extension of such a system made by adding a recursively
definable w-consistent class of axioms. As can be easily confirmed, the systems which satisfy
assumptions 1 and 2 include the Zermelo-Fraenkel and the von Neumann axiom systems of set
theory, and also the axiom system of number theory which consists of the Peano axioms, the
operation of recursive definition . . . and the logical rules. Assumption 1 is in general satisfied by
every system whose rules of inference are the usual ones and whose axioms . . . are derived by
substitution from a finite number of schemata.?

Thus, it is not only arithmetic but the entire system of axiomatic set theory and the ‘logicism

program’ of repairing the foundations that falls victim to the Gddel ‘incompleteness theorems.’

8 3.2 The Constructionist Proposal

The Hilbert plan, in effect, identifies ‘mathematics’ with the formulae that are used to express
mathematics. However, to execute this plan requires some set of axioms and some basic set of
rules of inference as a starting point. Hilbert’s prescription does not say where these are to come
from, and to obtain them mathematics used the material it already had on hand. But, as we have
seen, these axioms (and the rules of inference contained in Principia Mathematica) were
proposed empirically, as presuppositions mathematicians were already making in practice, rather
than on the basis of any epistemological analysis of their ‘self-evidential character.” If these
‘foundations’ had worked out under Hilbert’s program, then of course the rationalist bastion
would have survived. But unfortunately for rationalism, they did not. Nor can this problem be
attributed to our simply not being currently in possession of some ‘missing axiom’ which, if we
had it, would solve the problem. Gddel’s proof showed that the problem cannot be solved by
adding more axioms to the “baseline’ set up by, for example, the ZFS system.

Does this mean the “heretical’ approach proposed by L.E.J. Brouwer (in 1908) known as the
‘constructivist school” is by default the “correct” way to proceed in mathematics? On the face of

it, the answer here appears to be ‘no’ as well.

2 Kurt Godel, “On formally undecidable propositions of Principia Mathematica and related systems,”
translated and reprinted as On Formally Undecidable Propositions of Principia Mathematica and Related
Systems, B. Meltzer (tr.) and R.B. Braithwaite, NY: Dover Publications, 1992.
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Brouwer’s position was that the natural numbers are given to us by a fundamental intuition, which is
the starting point for all mathematics. He demanded that all mathematics should be based
constructively on the natural numbers. That is to say, mathematical objects may not be considered
meaningful, may not be said to exist, unless they are given by a construction, in finitely many steps,
starting from the natural numbers. It is not sufficient to show that the assumption of nonexistence
would lead to a contradiction.

For the constructivists, many of the standard proofs in classical mathematics are invalid. In some
cases they are able to supply a constructive proof. But in other cases they show that a constructive
proof is impossible: theorems which are considered to be well-established in classical mathematics
are actually declared to be false for constructivist mathematics [DAVI: 333-334].

Brouwer regarded Hilbert’s program as misconceived at the outset because it identified
mathematics with the formulas used to represent mathematics. However, there are two factors
working against Brouwer that are pertinent here. First, Gédel’s method did employ ‘the natural
numbers’ in its method, albeit in a novel way sometimes called “Gédel numbers.” This method
has sometimes been described as the homologue in metamathematics to Descartes’ invention of
the Cartesian coordinate system in analytic geometry. It appears that Gédel’s theorems apply with
the same force to the sort of mathematical systems sanctioned by Brouwer.

Second, and more importantly, Brouwer’s approach presupposes that the ‘natural numbers’
are ‘given intuitively.” Is this so? The body of psychological evidence finds against this. We all
know, of course, that children have to be taught their numbers and basic arithmetic. But is the
ability to teach them founded upon an innate ‘intuition” for numbers? Piaget studied this question

and the answer is ‘no’:

All the preceding experiments have shown that at a first level (usually at about the age 4% - 5), the
child evaluates discontinuous quantities as if they were continuous, i.e., extended, quantities. His
quantitative judgments are thus based only on the general shape of the set and on global
relationships such as ‘more or less long’, ‘more or less wide’, etc. . . . That the child should begin by
considering non-analyzed wholes, without feeling the need to decompose them as long as
experience does not compel him to do so, is perfectly consistent with what we know of the
psychology of thought at this stage.

Hence the child who is asked to pick out ‘as many’ counters as there are in a given set is in no way
equipped by his intellectual structure to consider the set as being a union of units, i.e. 1+1+1 . ..
etc., which would imply that he already possessed the notion of whole number. For the child,
therefore, ‘as many’ merely means a set that is similar to the model with respect to its overall
qualities. But if he does not feel the need for decomposition, does this mean that he is incapable of
it? To our mind, the preceding reactions have given a decisive answer to this question.

The only principle of synthesis at the disposal of the child at the first level is the intuitive global
perception of the general configuration itself, in the absence of “‘operations’ which would enable him
to put together again the various parts of the perceptual intuition if it were broken up. That is why,
as soon as there is an alteration in the data, children of the first stage apparently base their
evaluations on one criterion only: length of the rows, width of the figures, density, etc.

But might it not be said that in the very action of copying there is co-ordination of the global
qualities, and therefore at least a suggestion of decomposition, since the model is roughly
reproduced? There precisely is the point: the copy is only roughly correct. Closed figures depending
on a given number of elements are well reproduced, because they involve a ‘good’ configuration,
but collections, rows, open figures, and even closed figures with an arbitrary number of elements,
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are not correctly copied. Linear series, in particular, are evaluated by their total length only,
irrespective of their density.

Although the method of global comparison allows of a rough comparison between two sets of the
same form, covering the same area, and having approximately the same density, it becomes
inadequate as soon as these properties differ substantially. Two sets which the child has stated to be
identical by global comparison are no longer considered equivalent when the elements of one set are
spaced out. He cannot understand that when there is a change in the shape, and therefore in the
distribution of the parts, something remains invariant, namely, the number of elements. The reason
is that he has not yet acquired the notion of number, but only of perceptual wholes. Hence, in our
view, the notion of conservation of a set is lacking because the elementary relationships inherent in
the global perceptions are merely juxtaposed instead of being coordinated [PIAG10: 86-87].

The proposition that we have an innate ‘intuition” for natural numbers is, therefore, demonstrably
false. When we discussed the transcendental schemata we saw that Kant called the transcendental
schema of Quantity ‘number.” However, as we discussed at that time, ‘number’ used here does
not refer to the ‘numbers’ of counting and arithmetic, e.g. 0, 1, 2, etc. It referred to a process of
successive aggregation of homogeneous parts which has three modi, corresponding to the
categories of unity, plurality, and totality, respectively. It is erroneous to equate ‘number’ as
transcendental schema to ‘number’ in the sense of the ‘natural’ numbers. Brouwer’s program also

miscarries at the first step.

§ 3.3 Certainty, Transcendental Acroams and Set Theory

Mathematics is “knowledge through the construction of concepts,” but philosophy is “knowledge
through concepts.” Specifically, it is knowledge through transcendental concepts (objectively
valid ideas) by which we understand what is necessary for the possibility of experience as human
beings are said to ‘have’ it. Metaphysics analyzes the form of all our knowledge. Furthermore,
empirical concepts that do not overrun the fundamental condition of being a representation of an
object possible in an actual sensuous experience are concepts that are not transcendent.

When joined to the first principles of Critical epistemology, such concepts provide the basis

of an objectively valid Realdefinition of ‘certainty.’

Holding-to-be-true is in general of two kinds, certain and uncertain. Certain holding-to-be-true, or
certainty, is combined with consciousness of necessity, while the uncertain, or uncertainty, is
combined with consciousness of contingency or the possibility of the opposite. The latter is again

either subjectively as well as objectively insufficient, or objectively insufficient but subjectively
sufficient. The former is called opinion, the latter must be called belief [KANT8a: 570-571 (9: 66)].

In terms of the form of logical function in determinant judgments, holding-to-be-true is Quality,
i.e. the judgment is affirmative, negative, or infinite (negative-regarded-as-affirmative, e.g. ‘Hans
is not-French’). Thus the quality of holding-to-be-true also has a degree, which is what we refer

to when we speak of ‘absolute certainty.” But the term ‘absolute’ implies a kind of maximum, i.e.
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a holding-to-be-true compared to which no other judgment is deemed to have any greater degree.
In the Critical epistemology the standard for absolute certainty is the holding-to-be-true that each
of us accords the real Dasein of one’s I of transcendental apperception. As human beings, each of
us is more certain of nothing compared to the certainty in which we hold our own Dasein. That
which follows with ‘ungualified’ necessity from the holding-to-be-true of our own Dasein
follows apodictically with absolute certainty. Of course, there are not many objects of judgment
that meet this standard. But the transcendental first principles, as concepts, do fit this character
owing to their unique status as concepts necessary for the possibility of experience in the
consciousness of the transcendental Subject.

We call these transcendental first principles the acroams of Critical epistemology. If, then,
we wish to establish a doctrine of formal mathematics upon axioms we can hold-to-be certain,
these axioms must be constructed on the basis of consequences deduced from the transcendental
acroams, for only in that way can they be linked to our standard of absolute certainty in
epistemology. The deduction of such a set of axioms would then constitute an applied metaphysic
of mathematical doctrine. The issue of ‘proving the truth’ of such axioms then does not arise in
the science of mathematics because this establishment of axiomatic truth properly belongs to the
metaphysic of mathematics, this being none other than its Critical applied metaphysic. Critical
metaphysics proper has acroams but no axioms; mathematics has axioms but no acroams. The
possibility of axioms in mathematics rests on the acroam of Axioms of Intuition (which is not
itself an axiom but rather is a first principle for the construction of axioms).

Regarding axioms, Kant tells us

These are synthetic a priori first principles so far as they are immediately certain. Now one
concept cannot be synthetically yet immediately combined with another because for us to be able to
go beyond a concept, a third mediating cognition is necessary. Now since philosophy is merely the
knowledge of reason according to concepts, no first principle is to be encountered in it that deserves
the name of an axiom. Mathematics, on the contrary, is capable of axioms because by means of the
construction of concepts in an intuition of the object it can connect the predicates of the latter a
priori and immediately, e.g. that three points always lie in a plane. A synthetic first principle, on the
contrary, can never be immediately certain merely from concepts, e.g. the proposition that
everything that happens has its cause, because | must always look around for a third part, namely the
condition of time-determination in an experience, and could never directly know such a principle
immediately from concepts alone. Discursive first principles are therefore something entirely
different from intuitive ones, i.e. axioms [KANT1a: 640 (B: 760-761)].

Kant’s distinction here is that mathematical axioms define objects (mathematical objects), and to
do so requires construction of the concept of the object by means of a synthesis in sensibility.
Mathematics can and does make abstraction from empirical intuition, i.e. it removes reference to
the sensational matter of the intuition and keeps only its form of sensible representation. Because

mathematics can (and always does) define its objects, the cognitions of these objects are made
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concepts, and therefore we are always immediately certain so far as knowing the mathematical
object is concerned. Knowing, however, that two different defined objects are defined in such a
manner that these definitions are reciprocally consistent is another matter, and this is why
mathematics is a science and not merely a poetic exercise.

In this limited sense, Riemann geometry is as ‘certain’ as Euclidean geometry, and ZFS set
theory is as ‘certain’ as non-Cantorian set theory. However, this certainty is of limited degree and
is not ‘absolute’ because the objects of these topics are not defined in connection with the
possibility of experience but merely in the context of a particular ‘type’ of experience called
‘mathematical experience.” Regardless of whether or not one is willing to tag a mathematical
object with a specific ontological meaning in some context of sensuous Nature, the concept of a
mathematical object — for instance, the concept of a ‘set” — nonetheless makes reference to an
object and has some kind of definition (even if this definition is merely operational and is not
physically ontological). If it did not it would be impossible for the mathematician to “feel’ that he
or she is working with ‘something real.” That mathematics is ‘intuitive’ does not mean that it is
undisciplined speculation or mere daydreaming; it means the mathematician ‘knows what he’s
talking about.” Poincaré has shared an anecdote with us that might help to illustrate this point. His
anecdote is actually a string of related anecdotes, so we will look at only the first few here. The

rest of the story, for those who are curious, can be found in the citation;

It is time to penetrate further, and to see what happens in the very soul of the mathematician. For
this purpose | think I cannot do better than to recount my personal recollections. Only | am going to
confine myself to relating how | wrote my first treatise on Fuchsian functions . . . What will be
interesting for the psychologist is not the theorem but the circumstances.

For a fortnight | had been attempting to prove that there could not be any function analogous to
what I have since called Fuchsian functions. | was at that time very ignorant. Every day | sat down
at my table and spent an hour or two trying a great number of combinations, and | arrived at no
result. One night | took some black coffee, contrary to my custom, and was unable to sleep. A host
of ideas kept surging in my head; | could almost feel them jostling one another, until two of them
coalesced, so to speak, to form a stable combination. When morning came, | had established the
existence of one class of Fuchsian functions, those that are derived from the hypergeometric series. |
had only to verify the results, which only took a few hours.

Then | wished to represent these functions by the quotient of two series. The idea was perfectly
conscious and deliberate; 1 was guided by the analogy with elliptic functions. | asked myself what
must be the properties of these series, if they existed, and | succeeded without difficulty in forming
the series that | have called Theta-Fuchsian.

At this moment | left Caen, where | was then living, to take part in a geological conference
arranged by the School of Mines. The incidents of the journey made me forget my mathematical
work. When we arrived at Coutances, we got into a break to go for a drive, and, just as | put my foot
on the step, the idea came to me, though nothing in my former thoughts seemed to have prepared me
for it, that the transformations | had used to define Fuchsian functions were identical with those of
non-Euclidean geometry. | made no verification, and had no time to do so, since | took up the
conversation again as soon as | had sat down in the break, but | felt absolute certainty at once. When
| got back to Caen | verified the result at my leisure to satisfy my conscience [POIN2: 52-53].
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This ‘intuitive’ process is a far cry from the robot-like drill that formalism uses as a myth to
describe the doing of mathematics. | trust it is evident to the reader that Poincaré ‘had an object in
mind’ (which most of us would find abstract beyond comprehension) as he was doing this work.

But ‘absolute’ certainty was the grail being sought after during the time of the “crisis in the
foundations,” and let us turn our discussion in that direction. Our present goal is a modest one.
Mathematics today is built up from set theory (or, if you prefer, set theories), and so let us ask: is
the idea of a “set” an idea with an objective validity that can go beyond the limited and contingent
objective validity of, for instance, Poincaré’s ‘Fuchsian functions’? If it is, what sort of
limitations must there be for the context of this object to ensure it remains objectively valid and
does not trespass beyond the horizon of any possible experience, and thereby risk introduction of
transcendent speculations with the attendant /oss of certainty in its concept?

We derive the idea of a set from the primitive idea of representation. Every representation is
represented in terms of a matter and a form. The making of any specific representation is an act of
combination (conjunctio). The matter of a combination is composition (compositio) and its form
is connection (nexus). Composition is the synthesis of a manifold of what does not necessarily
belong to each other. Such a synthesis Kant calls mathematical (synthesis of the homogeneous).
Composition can itself be divided into a matter (Quality) and a form (Quantity). Quantity in the
synthesis of a manifold is called aggregation and is directed at the production of an extensive
magnitude of representation. An extensive magnitude is that in which the representation of parts
makes possible the representation of the whole. An aggregate is that which is produced by
aggregation, is therefore an extensive magnitude, and ‘aggregate’ was the term originally used in
mathematics for that which we today call a mathematical setr. A set is the Quantity in a
representation.

Now, this definition has logical validity but this is not enough for our purposes. For this
concept of a set to have real objective validity, we must find its necessary relationship to the 7 of
transcendental apperception. We find this relationship in the acroam of the Axioms of Intuition,
which from the theoretical Standpoint states: As regards their intuition, all appearances are
extensive magnitudes; from the judicial Standpoint the acroam states: All intuitions are extensive
magnitudes. All our knowledge of objects requires empirical intuition — the representation of
which is made possible by the pure a priori intuitions of space and time as we discussed in
Chapters 17 and 21 — and therefore the concept of a set is grounded in a transcendental principle
and thereby acquires its basis for apodictic, real, and objective validity.

We may note here that the concept of a set is placed within the matter of representation.

However, as Quantity in a representation the concept of a set is a concept of form of composition,
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and this is consistent with the formal characteristic of mathematics. But we must also take note
that while we now have a Realdefinition for the concept of ‘set,” this Realdefinition does not
extend to the concept of the ‘elements in a set.’

The idea of an ‘element’ of a set is taken from a wider and older tradition of thought.
Although some people assume that the idea of an “element’ of a set is an analogy to the idea of
‘elements’ in chemistry, this is not the actual genesis of the term. To find a technical description
of the origin of the concept of an ‘element’ as this term is broadly used in modern times, we must

go back much farther, namely to Aristotle and his metaphysics.

We call an element that which is the primary component immanent in a thing, and indivisible in
kind into other kinds, e.g. the elements of speech are the parts of which speech consists and into
which it is ultimately divided, while tzey are no longer divided into other forms of speech different
in kind from them. If they are divided, their parts are of the same kind, as a part of water is water
(while a part of the syllable is not a syllable). Similarly, those who speak of the elements of bodies
mean the things into which bodies are ultimately divided; while they are no longer divided into
things differing in kind; and whether the things of this sort are one or more, they call these elements.
The elements of geometrical proofs, and in general the elements of demonstrations, each of which is
implied in many demonstrations, are called elements of demonstrations; and the primary deductions,
which have three terms and proceed by means of one middle, are of this nature.

People also transfer the word ‘element” from this meaning and apply it to that which, being one
and small, is useful for many purposes; for which reason the small and simple and indivisible is
called an element. Hence comes the facts that the most universal things are elements (because each
of them being one and simple is present in a plurality of things, either in all or in as many as
possible), and that unity and the point are thought by some to be first principles. Now, since the so-
called genera are universal and indivisible (for there is no formula for them), some say the genera
are elements, and more so than the differentia, because the genus is more universal; for where the
differentia is present, the genus accompanies it, but where the genus is, the differentia is not always.
It is common to all the meanings that the element of each thing is the first component immanent in
each [ARIS7: 1601-1602 (1014°26-1014°15)].

Avristotle’s metaphysics is not the metaphysics of the Critical Philosophy, and so we must see
what to make out of this idea of ‘element’” from the Copernican perspective. The word
‘immanent’” means “living, remaining or operating within; inherent.” With regard to composition,
that which is ‘immanent’ in any composition is its matter, and this is nothing else than the Quality
in the representation. In terms of the synthesis, this is coalition in the composition and is directed
at the production of intensive magnitudes. An intensive magnitude is a unity that can be
apprehended as plurality only through an approximation to negation. We do not speak here of
analytic division (because this is division of an aggregate), but rather of negation as a real
opposition (Widerstreit). Thus the Critical concept of intensive magnitude has that character of
which Aristotle spoke when he said that if an ‘element’ of a thing x is divided “the parts are of the
same kind” but can no longer be called elements of whatever x we started with. Intensive
magnitude “‘has no parts different in kind’. Euclid’s idea of a ‘point’ is consistent with this idea of

an ‘element’: A Euclidean point is “un-extended”. Try to “divide” one and you must either negate
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it (annihilation) or turn it from an element into something else, e.g. a “monad” of non-standard
analysis [ROBI: 57]. An ‘element’ of a set is a representation of a coalition in intensive
magnitude. A set-theoretic point (member of a set) is something else entirely. It is a complete
and singular composition employed as a unit in the process of aggregation. It should not be
called an element. A member ‘belongs to’ a set; an element does not.

Again, this has logical validity but we still require a transcendental ground for it to have real
objective validity. We find this in the transcendental acroam of Anticipations of Perception. From
the theoretical Standpoint this principle states: In all appearances the sensation, and the real
which corresponds to it in an object, has intensive magnitude. From the judicial Standpoint the
principle states: The intensive magnitude (degree) of sensation presents the complete condition
for marking sensibility at a moment in time. By this principle we tie the concept of a set ‘element’
to the manner in which the consciousness of the Organized Being is affected, and thereby to the
representation of an Existenz through the power of receptivity. Thus, ‘element’ obtains its ground

for apodictic, real, and objective validity.

The real in appearance always has a magnitude, which is not, however, encountered in
apprehension, as this takes place by means of the mere sensation in a moment and not through
successive synthesis of many sensations, and thus does not go from the parts to the whole; it
therefore has a magnitude, but not extensive [KANT1a: 291 (B: 210)].

We have obtained the Realdefinition for the concept of ‘set” and for ‘element’ of a set. The
acroamatic grounds for these definitions come through the synthesis in sensibility, and therefore
all further refinements of these concepts must likewise be able to trace a necessary relationship to
this synthesis. Any characteristic hypothesized as a further characteristic of either of these
concepts will have real objective validity provided this relationship to the synthesis in sensibility
can be established as necessary for its possibility. Absent of this relationship, the hypothesized
characteristic has no transcendental ground and its incorporation into the concepts of ‘set’ or
‘element’ or ‘point’ becomes transcendent and robs us of real objective validity in the concept.

Now, in addition to the concepts of ‘set’ and ‘element’ set theory also contains concepts of
relations (‘functions’ and ‘rules of inference’). These always involve transformations between
sets. For example, the notation f:4 — B or f:4A — A denotes a rule of transformation from a
‘domain set’ (4) to another set. In other words, this notation is a shorthand for saying that f
defines some subset of a Cartesian product and does not directly denote, for instance, taking 4
immediately back into itself (as the notation /' :4 — 4 merely seems to imply). We must not
confuse the abbreviated notation for the logical train of concepts this notation is meant to convey.

The transcendental ground for real objective validity for any set-theoretic relation is always
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to be found in judgmentation, and for objective relations we must look to the process of
determining judgment (in the combination of concepts) or reflective judgment (for inferences of
judgment). However, inferences of judgment are lacking an objectively sufficient ground
(although such inferences have subjective sufficiency), and so the Realdefinition of any set-
theoretic relation must turn to determining judgment under the acroam of the Analogies of
Experience and must look for its synthesis in the combination of concepts under the rule of the
categories of understanding. Here we must remember that every determinant judgment is a
combination involving all four heads of representation, i.e. a category of Quantity plus a category
of Quality plus a category of Relation plus a category of Modality. No set-theoretic relation can
have real objective validity if it lacks having any notion in one or more of these four titles of
representation. There are 81 forms of determinant judgments for combining two concepts.

We can, of course, take a plurality of concepts back into the synthesis of sensibility (through
the synthesis of reproductive imagination), but if such a plurality of concepts is to be regarded as
composing the set on the left-hand side of the above notation, these concepts must belong to the
same logical sphere in the manifold of concepts. Therefore they are interconnected by specific
determinant judgments, and these judgments fix rules for the form of comparates in the three-fold
synthesis of the Verstandes Actus of sensible synthesis. The resulting intuition is, of course, a
representation of the set on the right-hand side of the above notations. Because the number of
distinct set-theoretic relations possible is indeterminate a priori, the Realdefinition of any
particular set-theoretic relation must proceed by means of an analysis of the specific class of
synthesis in comprehension that the relation is intended to represent. Its definition therefore will
always involve consideration of the Verstandes Actus in the Gestaltung of sensibility. Because we
are faced here with an a priori indeterminate number of possible functions, we must leave our
discussion of the proper rules for the real definition of specific set-theoretic relations for a future

work, namely to a doctrine of an applied metaphysic.

8§ 3.4 Critique of the Axioms of ZFS Set Theory
Finally, let us take a look at how the axioms of the Zermelo-Fraenkel-Skolem set theory compare
with the Critical requirements we have just discussed. To preview the outcome of this critique,
we are going to find that there are axioms in the ZFS system that do not meet up with the
conditions required for apodictic and real objective validity in a mathematical doctrine. This
means just what you think it does: a mathematical system founded upon these axioms is incapable
of representing mathematically a doctrine of Nature and serves only to produce a mathematical

doctrine of a transcendent naturalism. A physicist, for example, cannot make a valid claim that
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his mathematical physics is an objectively valid description of Nature by saying “this is what the
mathematics tells us.” The mathematics he is using contains transcendent ideas, and therefore at
some point will lose its objective validity for explaining Nature by disappearing over the horizon
of possible experience. A physics theory given form by such mathematics might, nonetheless,
maintain a limited pragmatic validity, but only if this theory makes novel predictions that can be
experimentally or observationally put to the test. 1T such is the case then the theory can stand as a
pragmatic approximation 0f Nature and be fecund in its application. However, if the theory
makes no novel predictions that can be subjected to the test of actual experience then the theory
says nothing at all as a doctrine of Nature. It is instead mere speculation and has no better real
standing in science than Plato’s Timaeus. This is to say it can claim no standing at all. It is and
remains mere Platonism until and unless new instruments are found that push out the horizon of
possible experience and thereby enable us to put the theory to the test.

Upon this point follows another comment which, I suspect, mathematicians may find a bit
unpalatable. The larger part of the mathematics community reacted with alarm to Brouwer’s
radical call for abolishing traditional mathematics. They felt, and quite rightly, that Brouwer’s
‘constructivist’ program would lead, in Hilbert’s words, to “losing a great part of our most
valuable treasure.” A puritanical reaction to the critique we are about to undertake is a mistake
because it would deprive the other sciences of their most indispensable tool in searching for an
understanding of Nature. In other words, there is value in a theory even if this theory’s objective
validity is merely pragmatic. A pragmatic theory — in the sense described above — provides a
‘model of a model’, i.e. an approximation of Nature, and this has its uses in the growth and
development of all sciences including mathematics. But the employment of a pragmatic theory is
the employment of a two-edged sword, and it is important that we be able to distinguish between
what has real objective validity vs. what has merely logical validity, and that we know where a
logical approximation to real objective character begins and ends.

Mathematics is an empirical science, but it is also one within which some of its constructs
are capable of maintaining apodictic, real, and objective validity. This part of mathematics is a
doctrine we may justly call Critical mathematics. The rest | call hypothetical mathematics, and
this part has great value for science and even more so for engineering. Let us not, therefore, look
to a future where we obtain the former but throw away the latter. Let us instead approach the
discipline of mathematics with an eye to distinguishing what within it we can hold objectively
valid, because it is based upon axioms grounded in the Critical acroams, versus that which it
teaches us is a consequence of useful but nonetheless contingent premises. Let there be a part of

mathematics that is Critical and a part that is Pragmatic, and let this distinction replace the
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present-day distinction drawn between ‘pure’ mathematics and ‘applied’ mathematics.
With that, we proceed with our critique of the ZFS system. We will take each of its nine

axioms in turn.

1. The axiom of extensionality (two sets are equal if and only if they have the same

elements). This axiom is introduced in order to provide a definition of the idea of ‘equal.” In
Zermelo’s original system his expression of the earliest version of this axiom was expressed in
terms of logical identity: two sets x and y are equal “if they denote the same object.” As x and y
are to be sets, extensionality is a statement that a set is determined by its members (not its
elements). Other mathematicians raised some objections to Zermelo’s axiom, leading to two other
‘attitudes’ (as Fraenkel put it) regarding how the relation of ‘equality’ should be treated. Denoting

Zermelo’s “attitude’ as (1), the others were:

2) Equality as a (second) primitive relation within Z. Then the usual properties of any equivalence
(equality) relation must be guaranteed axiomatically, in particular substitutivity with regard to < in
the two-fold sense: of extensionality as stated above, and of equal objects being elements of the
same set.

3) Equality as a mathematically defined relation. We may define x=y by “if every set that contains
x contains also y and vice versa”, or by “if x and y contain the same elements”. The second way is
possible only if, as assumed in the following, every object is a set (including the null set). In the
former sense, extensionality must be postulated axiomatically; in the latter sense, an axiom has to
guarantee the former property . . .

Taking into account the admissibility of a set which has no element (“null set”), three positions
about individuals are tenable: that the domain contains one null set and also other individuals,
individuals but no null set, one null set but no other individuals. (A domain without null set and
individuals would be impractical.) The first position was taken by Zermelo and, for instance, by
Ackermann [1937]; the second by Quine from 1936 on; the third, first proposed by Fraenkel
[1921/22] and later accepted by von Neumann, Bernays, and others, is adopted in the following
[BERN: 6-7].

We can see what the mathematicians were aiming to accomplish with axiom 1, although to
the non-mathematician it might seem surprising that there could be learned disagreement over
how to go about accomplishing the aim. The axiom of extensionality contains two concepts that
mathematicians tend to regard as ‘primitive.” The first, of course, is the concept of ‘equals’ and is
the binary relation the axiom is intended to define. The second is the concept of ‘belongs to’; if “z
belongs to x” implies “z belongs to y” and vice versa, x and y are said to be ‘equal.’

This of course presumes that we know what it is for ‘z to belong to x” and etc. for y. But
what does this presuppose? This involves the idea of ‘comparison’ — which we have seen comes
in two flavors in the synthesis of apprehension. There is ‘comparison’ as Comparation and there
is ‘comparison’ as reflexion in the Verstandes Actus. But these acts are not acts of comparing two
representations with each other to determine ‘likeness’ and ‘unlikeness.” General comparison in

the Verstandes Actus refers to expedience in representation and always involves a third factor,
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namely a context of purpose. We know there is a third factor present here because we are dealing
with a synthesis and a synthesis always involves three factors.

Furthermore, the axiom of extensionality involves the making of an analytic division. That is
to say, it is presumed we take ‘take x and y apart’ and look at the constituents of their extensive
magnitude. But comparates in the synthesis of apprehension are not intuitions even if they come
to the synthesis via the synthesis of reproductive imagination, and therefore they are no longer
sets. This is because as representations they are now constituents of the materia ex qua of the
synthesis. The outcome (an intuition), while it provides a set, is not presupposed to be the same as
the comparates. We can imagine that the synthesis of reproduction of concept x and that of
concept y produces indistinguishable materia in qua in an intuition, but in this case all we can say
is that each concept (as a rule for the reproduction of an intuition) contains the same substance of
information (in the context of the data of the senses), but this does not implicate absolute identity
between x and y as concepts. All we can legitimately say is that there is an implication of the
reproduction of an identical spatial form in an empirical intuition.

The problem with the axiom as stated is that it is attempting to compare ‘elements’, but an
element has in its objectively valid context only intensive magnitude in a composition. The axiom
attempts to compare elements in terms of extensive magnitude (decomposition first into
compositional parts followed by an act of comparison that is not valid for the synthesis of the
Verstandes Actus). This is the sort of real subreption against which Bergson argued. Axiom 1 is
not an objectively valid primitive definition as it stated.

The mathematical concept of an equivalence relation is that it is a binary relation on a set in
which the reflexive, symmetric, and transitive properties hold. The Realerklirung of these
properties is grounded in the a priori synthesis of subjective time. But here, likewise, we look for
the transitive in the form of a temporal chain, the reflexive in the form of a join, and the
symmetric in the synthesis of concepts from which we can obtain a temporal reversal. Achieving
all three properties, particularly the symmetric property, involves a series in judgmentation.
Furthermore the child’s a priori representation of equivalence classification is not, as Piaget’s
work shows, quantitative but rather qualitative in a topological sense of that word.

If we seek a primitive Realdefinition of identity in the sense of ‘equivalence’ as mathematics
wishes to employ that concept, the proper starting point is with a relation of real opposition
(Entgegensetzung) that produces a real negation (Widerstreit). In spirit this approach to obtaining
a fundamental ‘axiom of extension’ is more in line with the concept of ‘set difference’ and, in
particular, with an idea that the composition of a set difference x-y and of a set difference y-x

produces no set (i.e. zero degree of intensive magnitude in composition). We must, of course,
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regard ‘set difference’ in this context in terms of the synthesis of a real Entgegensetzung. Put in
non-technical language, “x is equal to y if and only if | can’t see any difference.” However, we
must also bear in mind that such real comparison is always a synthesis, therefore always implies a
context, and so equivalence between two sets can only be relative to a context and is not absolute

(equivalence in all possible contexts). Context delimits equivalence.

2. Axiom of the null set (there exists a set with no members). To be a real set requires an

objective representation, which means the composition has extensive and intensive magnitude.
Therefore, ‘set with no members’ implies ‘representation with no magnitude’ and this is a
contradiction in terms. This ontological axiom of the null set has no objective validity.

The role of the “null set” in mathematics is essentially a formal role and it is used to allow
the expression of such statements as “set x and set y are disjoint” (x n y = &). It is also quite
handy in that the employment of the symbol & facilitates the simpler expression of some
mathematical formulas. In this use its homologue is the number 0 (the identity element in an
additive group) and & is made to play a similar role in set operations (e.g. x v & = x for any x).
But & is, in real objective terms, only a signifier that a synthesis in sensibility contains a real
contradiction (complete negation of intensive magnitude). Contradiction (Widerstreit between the
set-defining properties of each set) is possible and this is all that & can signify. & cannot be a set.

The objectively valid axiom would be: Some compositions are objectively impossible.

3. Axiom of unordered pairs (if x and y are sets then the set of pairs (x, y) or the set of pairs

(v, x) exists). The concept of an ordered pair has objective validity tied to the synthesis of
subjective time. If we presume that an (x, y) pair is not reflexive then the actuality of (x, y) at a
moment in time necessarily requires the Nichtsein of ordered pair (y, x) at that same moment.
Pairs (x, y) and (y, x) are, in other words, co-determining and therefore members of a disjunction.
The concept of the disjunction is the unity of (x, y) and (y, x), and this unity is the Realerkidrung

of the concept of an ‘unordered pair.” Axiom 3 is objectively valid.

4. Axiom of the Sum Set (if x is a set of sets, the union of all its members is a set). The first

consideration to be dealt with in this axiom is the idea of a “set of sets’. The concept of a ‘set’ is a
concept of Quantity in a representation; therefore, taken literally, ‘set of sets’ implies extensive
magnitude composed of extensive magnitudes. Now, an intuition is a singular representation and
so we cannot immediately infer an aggregation of extensive magnitudes in an intuition. However,
all that is required for the possibility of analytic division of an object of intuition into a

aggregation of representations, each of which contains an extensive magnitude, is the possibility
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of understanding the concept corresponding to that intuition by means of combinations with other
concepts (coordinate concepts and remote concepts connected in a series). This is nothing else
than the representation of a phenomenon by means of concepts connected in a common sphere.
Consequently, the idea of a ‘set of sets’ has objective validity through reference to the
manifold of concepts. A set which is said to be composed of sets is, in terms of representation in
cognition, the mediate concept of the Quantity of the manifold in an intuition of an appearance
made by combining intuitions from multiple moments in time. The distinct concept of a set of
sets is a representation possible with respect to the manifold of concepts. The extensive
magnitude of this set is thereby represented through the sphere of a concept, and because all
concepts contained in this sphere can be reproduced in sensibility through the act of reproductive
imagination, the resulting intuitions satisfy the intent of the axiom. Provided that this context is

maintained for the term ‘set of sets’, axiom 4 is objectively valid.

5. Axiom of Infinity. Recall that this axiom stipulates a synthesis of a mathematically

infinite number of terms. It is introduced in order to provide an axiomatic justification for the idea
of mathematical infinity. Now, the concept of an inference of induction (in reflective judgment) is
objectively valid, as is the concept of a series of combinations of concepts in the manifold of
concepts. However, an actual mathematically-infinite series is not an object of any possible
experience. The concept of a series with no condition of termination that can be known a priori is
objectively valid. However, to regard this merely problematic concept of mathematical infinity as
the concept of an actual object is utterly transcendent. At every moment in time the connection in
a series of concepts in the manifold of concepts must be regarded as having finite extensive
magnitude. The axiom of infinity has no real objective validity beyond mere ‘becoming’.

The concept of mathematical infinity is an idea of great pragmatic fecundity in mathematics.
It is also quite often an idea that requires the additional construction of rules of correspondence in
order to ward off antinomies in mathematics. (The branch of mathematics that deals with this is
called *analysis’). Under the usual rules of arithmetic, if we form a finite sequence of n+1 terms
oftheform 1 + % + ¥4 + . . . + (%)", it is easily verified that each additional term in the series
contributes less and less to the sum. If we regard this successive addition of terms as approaching
a limit as n is incremented without bound, the rule established by mathematical analysis tells us
that this series of additions approaches the numerical value of 2. Calculus is completely
dependent upon the supposition of the legitimacy of such limiting processes involving sums of
‘infinitely’ many terms. However, for all of this the axiom of infinity can never have ontological

validity (has no real object), and as a consequence all mathematics that posits such a set belongs
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to hypothetical (Pragmatic) mathematics and not to Critical mathematics.

6. Axiom of Replacement. This is an axiom schema. During the development of axiomatic

set theory this axiom became increasingly more complex to the point where it is difficult to even
state it in non-symbolic language. Its intent, however, is to state that any “definite’ property that
can be stated in a formal language can be used to define a set. The complications that have
attended axiom 6 arise from the need to avoid the Russell paradox. It is in effect a formula system
for trying to define what constitutes a ‘definite’ property. In its formal ‘language’ the axiom is a
prescription of requirements for relationships among multiple ‘property sets’. A full critique of
this axiom therefore requires a critique of each of its various parts, a task better suited for the job
of developing an applied metaphysic. Here what can be said is: ‘definite property’ cannot be
‘definitely defined” without reference to the objects that are to be members of the set and to the
objective meaning of the ‘functions’ used to define the predicate set. To be objectively valid we
must restrict these objects and also the predicate set to be neither transcendent nor contradictory.

The axiom does not ensure the former. It therefore does not guarantee us an objectively valid set.

7. Axiom of the Power Set (for any set x the set y consisting of all the subsets of x exists).

The concept of a ‘subset’ is a concept of a possible analytic division of a set. Now, a concept re-
introduced into the synthesis of apprehension as materia ex qua of the synthesis is subject to an
analytic judgment and does not necessarily have the extensive magnitude it contains completely
included in the intuition resulting from the synthesis. This is because the Verstandes Actus of
abstraction removes those factors of representation in which two concepts undergoing
combination in a singular intuition differ (as to purpose). The homologue in set theory for
abstraction is the intersect of two sets. Therefore, the concept of a ‘subset’ has objective validity.
In this context, all the concepts contained in the sphere of a concept can be regarded as able
to represent ‘subsets’ of that concept. However, it is not possible for every aggregation of
concepts in the entire sphere of every concept to be reproduced in sensibility under the synthesis
of reproductive imagination (e.g. sphere of a disjunction). Therefore the possibility of a ‘set of all

the subsets’ does not hold for every concept, and consequently axiom 7 is not universally true.

8. Axiom of Choice (for any set s there is a function f'such that for any non-empty subset x

of s, f (x) is an element of x). As noted earlier, the axiom of choice has a somewhat checkered
history in mathematics. A somewhat more literal translation of the symbolic statement of this
axiom reads “if a implies non-empty set x is a function defined for every aes then there is
another function f (a) for aes and f (@) ex.” The original intent of this axiom was based on the

idea that any arbitrary objective property could be used as the basis for defining a set. In its
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modern form, the axiom asserts: given any collection of sets, one may form another set by
selecting precisely one element (chosen however one wishes) from each set in the given
collection.

Now, the crucial factor in this axiom is the idea that such choices can be made arbitrarily.
However, complete arbitrariness of choice lacks objective validity on three accounts. First,
‘element’ is a concept of Quality, not Quantity, and so ‘selection of an element’ implies
specification of some representation of sensuous materia in qua from some concept contained in
the sphere of the concept regarded as containing the representation of one of the “sets’ in the
‘collection of sets.” But it is not objectively valid to regard the synthesis of reproductive
imagination as reproducing the matter of a representation without also reproducing its form. The
literal intent of the axiom on this account alone lacks objective validity. Second, two comparates
in sensibility can be in real opposition (real Entgegensetzung) and consequently result in a real
negation. The axiom attempts to avoid this case by specifying that the selection must involve only
non-empty sets, but whether or not two comparates are going to negate each other cannot be
known a priori. Finally, the synthesis of sensibility is always subject to determination by rules (of
the pure synthesis of subjective space, of the pure synthesis of subjective time, of the Verstandes
Actus, and of the regulation of the employment of determining judgment). Because the
representation of an intuition must first of all serve the principle of formal expedience in
reflective judgment, not every arbitrary collection of contributions from an aggregation of ‘sets’
can represent an objectively valid context. The axiom of choice presupposes the possibility of
constructions without constraint, and this presupposition contradicts the transcendental character

of the processes of synthesis. Axiom 8 is not objectively valid.

9. Axiom of Regularity (non-empty set s implies x exists such that xes such that yex implies

yes). This axiom specifies that a set cannot contain itself as a member. From our Realdefinitions

of ‘set’ and ‘element’” we know this is true. This interpretation of axiom 9 is objectively valid.

8 3.5 Acroamatic Set Theory
The point of the foregoing critique of the ZFS system is to illustrate the extent to which the
formalist defense that the system of mathematics based upon it “isn’t about anything” is true if by
‘anything” we mean all objects of Nature. Certainly mathematics based on ZFS is “about
something,” and we can hardly do better than to call this ‘something’ by the name ‘hypothetical
mathematics.” Given the ZFS axioms and particular ‘rules of inference’ as the hypothetical

premise, the theorems that follow are true in the sense of being in agreement with their object
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(namely, the ZFS-based mathematical system).

However, the ideal of mathematics from ancient times has been that mathematics provides a
means of knowing the world through the pure power of rational thinking alone. Mathematics has
come to admit that this ideal is not realized. But this goal was never possible to achieve because it
rested upon a number of false ontological premises, e.g. the copy-of-reality hypothesis or the
mistaking of appearances for things-regarded-as-they-are-in-themselves. Critical mathematics, on
the other hand, would be mathematics based upon an applied metaphysic in accordance with the
acroams of the Critical Philosophy. To bring Critical mathematics into being is a task that will
require the development of a new system of axioms deduced from acroamatic principles So that
this new axiom system involves no transcendent ideas and whose rules are connected to the
capacity for objective representation of an Organized Being. This new system must be a structure
(in the Piagetian sense of that word), which is to say that it must contain a doctrine for the
construction of self-organizing rules of transformations. We will speak to this in Chapter 24.

The task before us is laborious, but the rewards for success are great. Such a Critical
mathematics will reveal to science where its mathematical theories enjoy real objective validity,
and point out where they do not. The development of Critical mathematics is crucial to making a
science proper of mental physics, a doctrine in which neuroscience and psychology can find their
unity. The lessons learned during the development of Critical mathematics can hardly help but
have collateral benefits for mathematics education. A rich undiscovered country lies just beyond

where we now stand. It awaits the coming of those who will pioneer this new frontier.

8§ 4. Mind and Mental Physics

We began this treatise with the question: What is mind? Although this question is ontological, the
characteristics of the phenomenon of mind are such that we were led to examine it from the
grounds of Kant’s epistemology. We have therefore undertaken a dual task: to understand Kant’s
Critical Philosophy on the one hand, and to apply this philosophy to understand the Nature of
mind on the other.

Mind is one of the two principal phenomena that characterize the individual human being,
the other being the phenomenon of body. Body is the sensible Nature of human Existenz, mind
the supersensible. They are coordinate phenomena of being human, neither able to take
precedence over the other. Rather, we have seen that these two aspects of the unity of human
Nature are reciprocal phenomena, each determining and determined by the other. In the logical

division of the phenomenon of being human we have expressed the organization of human
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Existenz as the synthetical unity of three logical parts: nous, soma and psyche.

Throughout this treatise it has been our constant concern to ground the objective validity of
the ideas of the theory. This has, naturally, required the examination of what it means for an idea
to have objective validity and to undertake to understand the requirements for achieving it.
Although the Dasein of mind is as self-evident as any phenomenon in Nature, the intelligible
Nature of mind required that we examine its Existenz most carefully. Since the natural evidence
of mind is apparent only through the Nature of one’s experience, this has led us to the view that
the proper description of the phenomenon of mind can be made only through a careful
examination of mental capabilities and capacities. We have therefore given our efforts to the
deduction of various representational processes and processes of knowledge synthesis. This has
provided us with a very detailed account of the organization and processes of the phenomenon of
mind, and these can be taken as delimiting the phenomenon.

Epistemological theories have implications for consequences in sensible Nature, and this
treatise has therefore devoted considerable space to reviewing empirical evidence related to these
consequences. This has not been because such evidence grounds the theory but, rather, because
the theory has consequences and we needed to compare these against scientifically determined
findings. The concordances we have seen in doing this helps us to better understand in detail the
scope of our theoretical ideas and served as a tool for avoiding the error of transcendent over-
generalization. This empirical evidence has provided us with insights that are lacking in Kant’s
great Critiques owing to the paucity of examples he was able to provide.

The great logical divisions of the capacities of nous are: the processes of synthesis of
conscious representation in sensibility, the process of determining judgment, the process of
reflective judgment, the process of practical judgment and the synthesis of appetition, and ratio-
expression through the power of speculative Reason. Those of psyche include the theory of the
data of the senses, the animating principles of psyche, the Lust-Kraft and Lust-organization of
psyche, and the reciprocity of nous and soma through the sensorimotor capacities. These have
been explained in terms of the primitive capacity of representation, which has formed the central
core of the theory. This chapter has examined where mathematics-as-science fits in this theory.

Yet, for all that has been accomplished in this treatise, there is still much more to do. What
has been done here is merely propaedeutic for a new science of mind, which I have called mental
physics. This science does not yet exist. But the groundwork for its development has been laid
here. How next does one proceed to make the transition from this work to that of an empirical
science? To appreciate this question, we must deal with one more topic that goes to the core of

the Critical method: the epistemology of undecidability. And so we come to our final Chapter.
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